|
| 1 | +function reg_est_bone( |
| 2 | + TTij, |
| 3 | + ssij, |
| 4 | + nobss, |
| 5 | + zzi, |
| 6 | + F_zidx, |
| 7 | + possible_transition, |
| 8 | + ntimepoints; |
| 9 | + niter=1000,tol=1e-4,factor=0.8) |
| 10 | + |
| 11 | + nind=size(TTij,1) |
| 12 | + ndimz=size(zzi,2) |
| 13 | + nstates=size(possible_transition,1) |
| 14 | + eye_nstates=Matrix{Float64}(LinearAlgebra.I,nstates,nstates) |
| 15 | + ( |
| 16 | + possible_transition_tuple, |
| 17 | + reachable_within, |
| 18 | + possible_sub, |
| 19 | + F_next_states, |
| 20 | + F_sub_states, |
| 21 | + absorbing_states, |
| 22 | + cycles)=infer_transitions(possible_transition) |
| 23 | + |
| 24 | + F_nzidx=fill(0,nstates,nstates) |
| 25 | + for (idx_begin,idx_end) in possible_transition_tuple |
| 26 | + F_nzidx[idx_begin,idx_end]=length(F_zidx[idx_begin,idx_end]) |
| 27 | + end |
| 28 | + |
| 29 | + F_betaz_est = Matrix{Vector}(undef, nstates, nstates) |
| 30 | + F_betaz_old = Matrix{Vector}(undef, nstates, nstates) |
| 31 | + F_eps = fill(0.0, nstates, nstates) |
| 32 | + F_hazard0 = Matrix{Vector}(undef, nstates, nstates) |
| 33 | + |
| 34 | + for idx_begin = 1:nstates |
| 35 | + for idx_end = 1:nstates |
| 36 | + if possible_transition[idx_begin,idx_end] |
| 37 | + F_betaz_est[idx_begin,idx_end] = fill(0.0, F_nzidx[idx_begin,idx_end]) |
| 38 | + F_betaz_old[idx_begin,idx_end] = fill(0.0, F_nzidx[idx_begin,idx_end]) |
| 39 | + F_hazard0[idx_begin,idx_end] = fill(0.002, ntimepoints) |
| 40 | + end |
| 41 | + end |
| 42 | + end |
| 43 | + F_SS_betaz = Matrix{Vector}(undef, nstates, nstates) |
| 44 | + F_II_betaz = Matrix{Matrix}(undef, nstates, nstates) |
| 45 | + |
| 46 | + F_nonzero_g=Matrix{Vector{Int64}}(undef,nind,size(ssij,2)) |
| 47 | + F_nonzero_gd=Array{Vector{Int64},3}(undef,nind,size(ssij,2),nstates) |
| 48 | + for ii in 1:nind |
| 49 | + for jj in 1:(nobss[ii]-1) |
| 50 | + a_sub_states=Vector{Int64}(undef,0) |
| 51 | + for idx_begin in findall(ssij[ii,jj,:]) |
| 52 | + for idx_end in findall(ssij[ii,jj+1,:]) |
| 53 | + if isassigned(F_sub_states,idx_begin,idx_end) append!(a_sub_states,F_sub_states[idx_begin,idx_end]) end |
| 54 | + end |
| 55 | + end |
| 56 | + unique_sub_states=sort(unique(a_sub_states)) |
| 57 | + F_nonzero_g[ii,jj]=unique_sub_states |
| 58 | + a_next_states=Vector{Int64}(undef,0) |
| 59 | + for idx_begin in unique_sub_states |
| 60 | + if isassigned(F_next_states,idx_begin) |
| 61 | + F_nonzero_gd[ii,jj,idx_begin]=F_next_states[idx_begin] |
| 62 | + else |
| 63 | + F_nonzero_gd[ii,jj,idx_begin]=[] |
| 64 | + end |
| 65 | + end |
| 66 | + end |
| 67 | + end |
| 68 | + |
| 69 | + F_one_g=fill(false,nind,size(ssij,2),nstates) |
| 70 | + for ii in 1:nind |
| 71 | + for jj in 1:(nobss[ii]-1) |
| 72 | + if sum(ssij[ii,jj,:])==1 && all(ssij[ii,jj,:].==ssij[ii,jj+1,:]) |
| 73 | + ss=findfirst(ssij[ii,jj,:]) |
| 74 | + if !cycles[ss] |
| 75 | + F_one_g[ii,jj,ss]=true |
| 76 | + end |
| 77 | + end |
| 78 | + end |
| 79 | + end |
| 80 | + |
| 81 | + ## define blocks |
| 82 | + nblock=fill(0,nind) |
| 83 | + block2jj=fill(-1,nind,size(TTij)[2],2) |
| 84 | + block2tt=fill(-1,nind,size(TTij)[2],2) |
| 85 | + for ii in 1:nind |
| 86 | + temp_nblock=0 |
| 87 | + temp_block2jj=fill(-1,size(TTij)[2],2) |
| 88 | + temp_block2tt=fill(-1,size(TTij)[2],2) |
| 89 | + temp_begin=nobss[ii] |
| 90 | + temp_end=nobss[ii] |
| 91 | + for jj in (nobss[ii]-1):(-1):1 |
| 92 | + if sum(ssij[ii,jj,:])==1 |
| 93 | + temp_begin=jj |
| 94 | + temp_nblock=temp_nblock+1 |
| 95 | + temp_block2jj[temp_nblock,1]=temp_begin |
| 96 | + temp_block2jj[temp_nblock,2]=temp_end |
| 97 | + temp_block2tt[temp_nblock,1]=TTij[ii,temp_begin] |
| 98 | + temp_block2tt[temp_nblock,2]=TTij[ii,temp_end] |
| 99 | + temp_end=jj |
| 100 | + end |
| 101 | + end |
| 102 | + nblock[ii]=temp_nblock |
| 103 | + block2jj[ii,1:temp_nblock,:]=temp_block2jj[temp_nblock:(-1):1,:] |
| 104 | + block2tt[ii,1:temp_nblock,:]=temp_block2tt[temp_nblock:(-1):1,:] |
| 105 | + end |
| 106 | + |
| 107 | + prob_by_jj=fill(NaN,nstates,nstates,size(TTij)[2]) |
| 108 | + prob_lt_tt=fill(NaN,nstates,nstates,ntimepoints) |
| 109 | + prob_gt_tt=fill(NaN,nstates,nstates,ntimepoints) |
| 110 | + prob_ge_tt=fill(NaN,nstates,nstates,ntimepoints) |
| 111 | + |
| 112 | + F_Egd = fill(0.0, nind, nstates, nstates, ntimepoints) |
| 113 | + F_Eg = fill(0.0, nind, nstates, ntimepoints) |
| 114 | + F_expr = fill(NaN, nind, nstates, nstates) |
| 115 | + F_zexpr = Array{Vector{Float64},3}(undef, nind, nstates, nstates) |
| 116 | + F_zzexpr = Array{Matrix{Float64},3}(undef, nind, nstates, nstates) |
| 117 | + |
| 118 | + start_time=time() |
| 119 | + for iter in 1:niter |
| 120 | + println(iter," - ") |
| 121 | + current_time=time() |
| 122 | + println(current_time-start_time) |
| 123 | + for ii in 1:nind |
| 124 | + prob=zeros(nstates,nstates,ntimepoints) |
| 125 | + expr=zeros(nstates,nstates) |
| 126 | + for (idx_begin,idx_end) in possible_transition_tuple |
| 127 | + zz_temp=zzi[ii,F_zidx[idx_begin,idx_end]] |
| 128 | + expr[idx_begin,idx_end]=exp(LinearAlgebra.dot(F_betaz_est[idx_begin,idx_end],zz_temp)) |
| 129 | + F_expr[ii,idx_begin,idx_end]=expr[idx_begin,idx_end] |
| 130 | + F_zexpr[ii,idx_begin,idx_end] = F_expr[ii,idx_begin,idx_end] * zz_temp |
| 131 | + F_zzexpr[ii,idx_begin,idx_end] = F_zexpr[ii,idx_begin,idx_end] * transpose(zz_temp) |
| 132 | + prob[idx_begin,idx_end,:]=1.0.-exp.(-F_hazard0[idx_begin,idx_end]*expr[idx_begin,idx_end]) |
| 133 | + end |
| 134 | + for idx_begin in 1:nstates |
| 135 | + prob[idx_begin,idx_begin,:]=1.0.-sum(prob[idx_begin,:,:],dims=1) |
| 136 | + end |
| 137 | + prob_by_block=fill(NaN,size(ssij)[2]) |
| 138 | + prob_by_jj=fill(NaN,nstates,nstates,size(ssij)[2]) |
| 139 | + prob_lt_tt=fill(NaN,nstates,nstates,ntimepoints) # can be defined outside the loop |
| 140 | + prob_gt_tt=fill(NaN,nstates,nstates,ntimepoints) # can be defined outside the loop |
| 141 | + prob_ge_tt=fill(NaN,nstates,nstates,ntimepoints) # can be defined outside the loop |
| 142 | + |
| 143 | + for jj in 1:(nobss[ii]-1) |
| 144 | + prob_temp=copy(eye_nstates) |
| 145 | + for tt in (TTij[ii,jj]+1):TTij[ii,jj+1] |
| 146 | + prob_lt_tt[:,:,tt]=prob_temp |
| 147 | + prob_temp=prob_temp*prob[:,:,tt] |
| 148 | + end |
| 149 | + prob_by_jj[:,:,jj]=prob_temp |
| 150 | + prob_temp=copy(eye_nstates) |
| 151 | + for tt in (TTij[ii,jj+1]):(-1):(TTij[ii,jj]+1) |
| 152 | + prob_gt_tt[:,:,tt]=prob_temp |
| 153 | + prob_temp=prob[:,:,tt]*prob_temp |
| 154 | + prob_ge_tt[:,:,tt]=prob_temp |
| 155 | + end |
| 156 | + end |
| 157 | + F_lt_jj = Vector{Matrix{Float64}}(undef,size(ssij)[2]) |
| 158 | + F_gt_jj = Vector{Matrix{Float64}}(undef,size(ssij)[2]) |
| 159 | + for bb in 1:nblock[ii] |
| 160 | + block_temp=fill(1.0,1,sum(ssij[ii,block2jj[ii,bb,1],:])) |
| 161 | + for jj in block2jj[ii,bb,1]:(block2jj[ii,bb,2]-1) |
| 162 | + F_lt_jj[jj]=block_temp |
| 163 | + block_temp=block_temp*prob_by_jj[ssij[ii,jj,:],ssij[ii,jj+1,:],jj] |
| 164 | + end |
| 165 | + prob_by_block[bb]=sum(block_temp) |
| 166 | + block_temp=fill(1.0,sum(ssij[ii,block2jj[ii,bb,2],:]),1) |
| 167 | + for jj in (block2jj[ii,bb,2]-1):(-1):block2jj[ii,bb,1] |
| 168 | + F_gt_jj[jj]=block_temp |
| 169 | + block_temp=prob_by_jj[ssij[ii,jj,:],ssij[ii,jj+1,:],jj]*block_temp |
| 170 | + end |
| 171 | + end |
| 172 | + for bb in 1:nblock[ii] |
| 173 | + for jj in block2jj[ii,bb,1]:(block2jj[ii,bb,2]-1) |
| 174 | + for tt in (TTij[ii,jj]+1):(TTij[ii,jj+1]) |
| 175 | + for a_sub_idx_begin in F_nonzero_g[ii,jj] |
| 176 | + if F_one_g[ii,jj,a_sub_idx_begin] |
| 177 | + g_temp=1.0 |
| 178 | + else |
| 179 | + g_temp=sum( |
| 180 | + F_lt_jj[jj]* |
| 181 | + prob_lt_tt[ssij[ii,jj,:],a_sub_idx_begin:a_sub_idx_begin,tt]* |
| 182 | + prob_ge_tt[a_sub_idx_begin:a_sub_idx_begin,ssij[ii,jj+1,:],tt]* |
| 183 | + F_gt_jj[jj])/prob_by_block[bb] |
| 184 | + end |
| 185 | + F_Eg[ii,a_sub_idx_begin,tt]=g_temp |
| 186 | + for a_sub_idx_end in F_nonzero_gd[ii,jj,a_sub_idx_begin] |
| 187 | + gd_temp=sum( |
| 188 | + F_lt_jj[jj]* |
| 189 | + prob_lt_tt[ssij[ii,jj,:],a_sub_idx_begin:a_sub_idx_begin,tt]* |
| 190 | + prob[a_sub_idx_begin:a_sub_idx_begin,a_sub_idx_end:a_sub_idx_end,tt]* |
| 191 | + prob_gt_tt[a_sub_idx_end:a_sub_idx_end,ssij[ii,jj+1,:],tt]* |
| 192 | + F_gt_jj[jj])/prob_by_block[bb] |
| 193 | + F_Egd[ii,a_sub_idx_begin,a_sub_idx_end,tt]=gd_temp |
| 194 | + end |
| 195 | + end |
| 196 | + end |
| 197 | + end |
| 198 | + end |
| 199 | + end |
| 200 | + for (idx_begin,idx_end) in possible_transition_tuple |
| 201 | + AA0=fill(0.0,ntimepoints) |
| 202 | + AA1=fill(0.0,F_nzidx[idx_begin,idx_end],ntimepoints) |
| 203 | + AA2=fill(0.0,F_nzidx[idx_begin,idx_end],F_nzidx[idx_begin,idx_end],ntimepoints) |
| 204 | + BB1=fill(0.0,F_nzidx[idx_begin,idx_end],ntimepoints) |
| 205 | + BB2=fill(0.0,F_nzidx[idx_begin,idx_end],F_nzidx[idx_begin,idx_end],ntimepoints) |
| 206 | + for tt in 1:ntimepoints |
| 207 | + for ii in 1:nind |
| 208 | + AA0[tt]=AA0[tt]+(F_Eg[ii,idx_begin,tt]-F_Egd[ii,idx_begin,idx_end,tt]/2.0)*F_expr[ii,idx_begin,idx_end] |
| 209 | + AA1[:,tt]=AA1[:,tt]+(F_Eg[ii,idx_begin,tt]-F_Egd[ii,idx_begin,idx_end,tt]/2.0)*F_zexpr[ii,idx_begin,idx_end] |
| 210 | + AA2[:,:,tt]=AA2[:,:,tt]+(F_Eg[ii,idx_begin,tt]-F_Egd[ii,idx_begin,idx_end,tt]/2.0)*F_zzexpr[ii,idx_begin,idx_end] |
| 211 | + end |
| 212 | + if AA0[tt]==0.0 |
| 213 | + BB1[:,tt].=0.0 |
| 214 | + BB2[:,:,tt].=0.0 |
| 215 | + else |
| 216 | + BB1[:,tt]=AA1[:,tt]/AA0[tt] |
| 217 | + BB2[:,:,tt]=AA2[:,:,tt]/AA0[tt] |
| 218 | + end |
| 219 | + end |
| 220 | + SS_betaz=fill(0.0,F_nzidx[idx_begin,idx_end]) # can be defined outside the loop |
| 221 | + II_betaz=fill(0.0,F_nzidx[idx_begin,idx_end],F_nzidx[idx_begin,idx_end]) # can be defined outside the loop |
| 222 | + for tt in 1:ntimepoints |
| 223 | + for ii in 1:nind |
| 224 | + SS_betaz=SS_betaz+F_Egd[ii,idx_begin,idx_end,tt]*zzi[ii,F_zidx[idx_begin,idx_end]]-F_Egd[ii,idx_begin,idx_end,tt]*BB1[:,tt] |
| 225 | + II_betaz=II_betaz+F_Egd[ii,idx_begin,idx_end,tt]*(BB1[:,tt]*transpose(BB1[:,tt])-BB2[:,:,tt]) |
| 226 | + end |
| 227 | + end |
| 228 | + F_betaz_old[idx_begin,idx_end]=deepcopy(F_betaz_est[idx_begin,idx_end]) |
| 229 | + F_betaz_est[idx_begin,idx_end]=F_betaz_est[idx_begin,idx_end]-factor*(II_betaz\SS_betaz) |
| 230 | + F_eps[idx_begin,idx_end]=sum(abs.(F_betaz_est[idx_begin,idx_end]-F_betaz_old[idx_begin,idx_end])) |
| 231 | + F_II_betaz[idx_begin,idx_end]=II_betaz |
| 232 | + for tt = 1:ntimepoints |
| 233 | + sum_Egd = sum(F_Egd[:,idx_begin,idx_end,tt]) # can be defined outside the loop |
| 234 | + if AA0[tt]==0.0 |
| 235 | + F_hazard0[idx_begin,idx_end][tt]=0.0 |
| 236 | + else |
| 237 | + F_hazard0[idx_begin,idx_end][tt]=sum_Egd/AA0[tt] |
| 238 | + end |
| 239 | + end |
| 240 | + end |
| 241 | + max_eps=sum(F_eps) |
| 242 | + if max_eps<tol break end |
| 243 | + end |
| 244 | + |
| 245 | + return( |
| 246 | + F_betaz_est, |
| 247 | + F_II_betaz, |
| 248 | + F_hazard0, |
| 249 | + F_Eg, |
| 250 | + F_eps) |
| 251 | +end |
| 252 | + |
0 commit comments