Skip to content

FTTransform多分类练习时遇到的问题 #112

@Wyw-Kevin

Description

@Wyw-Kevin

1、现在4.04版本torchkeras没有找到KerasModel来导入,但是有kerasmodel可以导入
2、在keras_model.fit(
train_data = dl_train,
val_data= dl_val,
ckpt_path='checkpoint',
epochs=20,
patience=10,
monitor="val_acc",
mode="max",
plot = True,
wandb = False
)部分出现错误
ValueError Traceback (most recent call last)
Cell In[47], line 1
----> 1 keras_model.fit(
2 train_data = dl_train,
3 val_data= dl_val,
4 ckpt_path='checkpoint',
5 epochs=20,
6 patience=10,
7 monitor="val_acc",
8 mode="max",
9 plot = True,
10 wandb = False
11 )

File d:\miniconda\envs\Classifier\Lib\site-packages\torchkeras\kerasmodel.py:321, in KerasModel.fit(self, train_data, val_data, epochs, ckpt_path, patience, monitor, mode, callbacks, plot, wandb, mixed_precision, cpu, gradient_accumulation_steps)
319 train_epoch_runner = self.EpochRunner(train_step_runner, quiet)
320 train_metrics = {'epoch': epoch}
--> 321 train_metrics.update(train_epoch_runner(train_dataloader))
323 for name, metric in train_metrics.items():
324 self.history[name] = self.history.get(name, []) + [metric]

File d:\miniconda\envs\Classifier\Lib\site-packages\torchkeras\kerasmodel.py:133, in EpochRunner.call(self, dataloader)
130 for step, batch in loop:
131 # Perform a step with the provided StepRunner
...
---> 49 features, labels = batch
51 # Compute loss
52 with self.accelerator.autocast():

ValueError: too many values to unpack (expected 2)
Output is truncated. View as a scrollable element or open in a text editor. Adjust cell output settings...

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions