|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "markdown", |
| 5 | + "metadata": {}, |
| 6 | + "source": [ |
| 7 | + "# Jawi-to-Rumi" |
| 8 | + ] |
| 9 | + }, |
| 10 | + { |
| 11 | + "cell_type": "markdown", |
| 12 | + "metadata": {}, |
| 13 | + "source": [ |
| 14 | + "<div class=\"alert alert-info\">\n", |
| 15 | + "\n", |
| 16 | + "This tutorial is available as an IPython notebook at [Malaya/example/jawi-rumi](https://github.com/huseinzol05/Malaya/tree/master/example/jawi-rumi).\n", |
| 17 | + " \n", |
| 18 | + "</div>" |
| 19 | + ] |
| 20 | + }, |
| 21 | + { |
| 22 | + "cell_type": "markdown", |
| 23 | + "metadata": {}, |
| 24 | + "source": [ |
| 25 | + "<div class=\"alert alert-info\">\n", |
| 26 | + "\n", |
| 27 | + "This module trained on both standard and local (included social media) language structures, so it is save to use for both.\n", |
| 28 | + " \n", |
| 29 | + "</div>" |
| 30 | + ] |
| 31 | + }, |
| 32 | + { |
| 33 | + "cell_type": "markdown", |
| 34 | + "metadata": {}, |
| 35 | + "source": [ |
| 36 | + "## Explanation\n", |
| 37 | + "\n", |
| 38 | + "Originally from https://www.ejawi.net/converterV2.php?go=rumi able to convert Rumi to Jawi using heuristic method. So Malaya convert from heuristic and map it using deep learning model by inverse the dataset.\n", |
| 39 | + "\n", |
| 40 | + "`چوميل` -> `comel`" |
| 41 | + ] |
| 42 | + }, |
| 43 | + { |
| 44 | + "cell_type": "code", |
| 45 | + "execution_count": 1, |
| 46 | + "metadata": {}, |
| 47 | + "outputs": [ |
| 48 | + { |
| 49 | + "name": "stdout", |
| 50 | + "output_type": "stream", |
| 51 | + "text": [ |
| 52 | + "CPU times: user 5.95 s, sys: 1.15 s, total: 7.1 s\n", |
| 53 | + "Wall time: 9.05 s\n" |
| 54 | + ] |
| 55 | + } |
| 56 | + ], |
| 57 | + "source": [ |
| 58 | + "%%time\n", |
| 59 | + "import malaya" |
| 60 | + ] |
| 61 | + }, |
| 62 | + { |
| 63 | + "cell_type": "markdown", |
| 64 | + "metadata": {}, |
| 65 | + "source": [ |
| 66 | + "### Use deep learning model\n", |
| 67 | + "\n", |
| 68 | + "Load LSTM + Bahdanau Attention Jawi to Rumi model.\n", |
| 69 | + "\n", |
| 70 | + "If you are using Tensorflow 2, make sure Tensorflow Addons already installed,\n", |
| 71 | + "\n", |
| 72 | + "```bash\n", |
| 73 | + "pip install tensorflow-addons U\n", |
| 74 | + "```" |
| 75 | + ] |
| 76 | + }, |
| 77 | + { |
| 78 | + "cell_type": "markdown", |
| 79 | + "metadata": {}, |
| 80 | + "source": [ |
| 81 | + "```python\n", |
| 82 | + "def deep_model(quantized: bool = False, **kwargs):\n", |
| 83 | + " \"\"\"\n", |
| 84 | + " Load LSTM + Bahdanau Attention Rumi to Jawi model.\n", |
| 85 | + " Original size 11MB, quantized size 2.92MB .\n", |
| 86 | + " CER on test set: 0.09239719040982326\n", |
| 87 | + " WER on test set: 0.33811816744187656\n", |
| 88 | + "\n", |
| 89 | + " Parameters\n", |
| 90 | + " ----------\n", |
| 91 | + " quantized : bool, optional (default=False)\n", |
| 92 | + " if True, will load 8-bit quantized model.\n", |
| 93 | + " Quantized model not necessary faster, totally depends on the machine.\n", |
| 94 | + "\n", |
| 95 | + " Returns\n", |
| 96 | + " -------\n", |
| 97 | + " result: malaya.model.tf.Seq2SeqLSTM class\n", |
| 98 | + " \"\"\"\n", |
| 99 | + "```" |
| 100 | + ] |
| 101 | + }, |
| 102 | + { |
| 103 | + "cell_type": "code", |
| 104 | + "execution_count": 2, |
| 105 | + "metadata": {}, |
| 106 | + "outputs": [ |
| 107 | + { |
| 108 | + "data": { |
| 109 | + "application/vnd.jupyter.widget-view+json": { |
| 110 | + "model_id": "530a47ea5c514ae9aa68c8a4e1e29d9c", |
| 111 | + "version_major": 2, |
| 112 | + "version_minor": 0 |
| 113 | + }, |
| 114 | + "text/plain": [ |
| 115 | + "HBox(children=(FloatProgress(value=0.0, description='Downloading', max=11034253.0, style=ProgressStyle(descrip…" |
| 116 | + ] |
| 117 | + }, |
| 118 | + "metadata": {}, |
| 119 | + "output_type": "display_data" |
| 120 | + }, |
| 121 | + { |
| 122 | + "name": "stdout", |
| 123 | + "output_type": "stream", |
| 124 | + "text": [ |
| 125 | + "\n" |
| 126 | + ] |
| 127 | + } |
| 128 | + ], |
| 129 | + "source": [ |
| 130 | + "model = malaya.jawi_rumi.deep_model()" |
| 131 | + ] |
| 132 | + }, |
| 133 | + { |
| 134 | + "cell_type": "markdown", |
| 135 | + "metadata": {}, |
| 136 | + "source": [ |
| 137 | + "### Load Quantized model\n", |
| 138 | + "\n", |
| 139 | + "To load 8-bit quantized model, simply pass `quantized = True`, default is `False`.\n", |
| 140 | + "\n", |
| 141 | + "We can expect slightly accuracy drop from quantized model, and not necessary faster than normal 32-bit float model, totally depends on machine." |
| 142 | + ] |
| 143 | + }, |
| 144 | + { |
| 145 | + "cell_type": "code", |
| 146 | + "execution_count": 3, |
| 147 | + "metadata": {}, |
| 148 | + "outputs": [ |
| 149 | + { |
| 150 | + "name": "stderr", |
| 151 | + "output_type": "stream", |
| 152 | + "text": [ |
| 153 | + "Load quantized model will cause accuracy drop.\n" |
| 154 | + ] |
| 155 | + }, |
| 156 | + { |
| 157 | + "data": { |
| 158 | + "application/vnd.jupyter.widget-view+json": { |
| 159 | + "model_id": "6d1d22a65abd48a28f9a1eb62f2d0c4d", |
| 160 | + "version_major": 2, |
| 161 | + "version_minor": 0 |
| 162 | + }, |
| 163 | + "text/plain": [ |
| 164 | + "HBox(children=(FloatProgress(value=0.0, description='Downloading', max=2926859.0, style=ProgressStyle(descript…" |
| 165 | + ] |
| 166 | + }, |
| 167 | + "metadata": {}, |
| 168 | + "output_type": "display_data" |
| 169 | + }, |
| 170 | + { |
| 171 | + "name": "stdout", |
| 172 | + "output_type": "stream", |
| 173 | + "text": [ |
| 174 | + "\n" |
| 175 | + ] |
| 176 | + } |
| 177 | + ], |
| 178 | + "source": [ |
| 179 | + "quantized_model = malaya.jawi_rumi.deep_model(quantized = True)" |
| 180 | + ] |
| 181 | + }, |
| 182 | + { |
| 183 | + "cell_type": "markdown", |
| 184 | + "metadata": {}, |
| 185 | + "source": [ |
| 186 | + "#### Predict\n", |
| 187 | + "\n", |
| 188 | + "```python\n", |
| 189 | + "def predict(self, strings: List[str], beam_search: bool = False):\n", |
| 190 | + " \"\"\"\n", |
| 191 | + " Convert to target string.\n", |
| 192 | + "\n", |
| 193 | + " Parameters\n", |
| 194 | + " ----------\n", |
| 195 | + " strings : List[str]\n", |
| 196 | + " beam_search : bool, (optional=False)\n", |
| 197 | + " If True, use beam search decoder, else use greedy decoder.\n", |
| 198 | + "\n", |
| 199 | + " Returns\n", |
| 200 | + " -------\n", |
| 201 | + " result: List[str]\n", |
| 202 | + " \"\"\"\n", |
| 203 | + "```\n", |
| 204 | + "\n", |
| 205 | + "If want to speed up the inference, set `beam_search = False`." |
| 206 | + ] |
| 207 | + }, |
| 208 | + { |
| 209 | + "cell_type": "code", |
| 210 | + "execution_count": 4, |
| 211 | + "metadata": {}, |
| 212 | + "outputs": [ |
| 213 | + { |
| 214 | + "data": { |
| 215 | + "text/plain": [ |
| 216 | + "['saya suka makan im',\n", |
| 217 | + " 'eak ack kotok',\n", |
| 218 | + " 'aisuk berthday saya, jegan lupa bawak hadiah']" |
| 219 | + ] |
| 220 | + }, |
| 221 | + "execution_count": 4, |
| 222 | + "metadata": {}, |
| 223 | + "output_type": "execute_result" |
| 224 | + } |
| 225 | + ], |
| 226 | + "source": [ |
| 227 | + "model.predict(['ساي سوك ماكن ايم', 'اياق اچق كوتوق', 'ايسوق بيرثداي ساي، جڬن لوڤا باوق هديه'])" |
| 228 | + ] |
| 229 | + }, |
| 230 | + { |
| 231 | + "cell_type": "code", |
| 232 | + "execution_count": 5, |
| 233 | + "metadata": {}, |
| 234 | + "outputs": [ |
| 235 | + { |
| 236 | + "data": { |
| 237 | + "text/plain": [ |
| 238 | + "['saya suka makan im',\n", |
| 239 | + " 'eak ack kotok',\n", |
| 240 | + " 'aisuk berthday saya, jegan lopa bawak hadiah']" |
| 241 | + ] |
| 242 | + }, |
| 243 | + "execution_count": 5, |
| 244 | + "metadata": {}, |
| 245 | + "output_type": "execute_result" |
| 246 | + } |
| 247 | + ], |
| 248 | + "source": [ |
| 249 | + "quantized_model.predict(['ساي سوك ماكن ايم', 'اياق اچق كوتوق', 'ايسوق بيرثداي ساي، جڬن لوڤا باوق هديه'])" |
| 250 | + ] |
| 251 | + } |
| 252 | + ], |
| 253 | + "metadata": { |
| 254 | + "kernelspec": { |
| 255 | + "display_name": "Python 3", |
| 256 | + "language": "python", |
| 257 | + "name": "python3" |
| 258 | + }, |
| 259 | + "language_info": { |
| 260 | + "codemirror_mode": { |
| 261 | + "name": "ipython", |
| 262 | + "version": 3 |
| 263 | + }, |
| 264 | + "file_extension": ".py", |
| 265 | + "mimetype": "text/x-python", |
| 266 | + "name": "python", |
| 267 | + "nbconvert_exporter": "python", |
| 268 | + "pygments_lexer": "ipython3", |
| 269 | + "version": "3.7.7" |
| 270 | + }, |
| 271 | + "varInspector": { |
| 272 | + "cols": { |
| 273 | + "lenName": 16, |
| 274 | + "lenType": 16, |
| 275 | + "lenVar": 40 |
| 276 | + }, |
| 277 | + "kernels_config": { |
| 278 | + "python": { |
| 279 | + "delete_cmd_postfix": "", |
| 280 | + "delete_cmd_prefix": "del ", |
| 281 | + "library": "var_list.py", |
| 282 | + "varRefreshCmd": "print(var_dic_list())" |
| 283 | + }, |
| 284 | + "r": { |
| 285 | + "delete_cmd_postfix": ") ", |
| 286 | + "delete_cmd_prefix": "rm(", |
| 287 | + "library": "var_list.r", |
| 288 | + "varRefreshCmd": "cat(var_dic_list()) " |
| 289 | + } |
| 290 | + }, |
| 291 | + "types_to_exclude": [ |
| 292 | + "module", |
| 293 | + "function", |
| 294 | + "builtin_function_or_method", |
| 295 | + "instance", |
| 296 | + "_Feature" |
| 297 | + ], |
| 298 | + "window_display": false |
| 299 | + } |
| 300 | + }, |
| 301 | + "nbformat": 4, |
| 302 | + "nbformat_minor": 4 |
| 303 | +} |
0 commit comments