11
2- .. code :: ipython3
2+ .. code :: python
33
44 import malaya
55
6- .. code :: ipython3
6+ .. code :: python
77
88 news = ' najib razak dan mahathir mengalami masalah air di kemamam terengganu'
99 second_news = ' ikat penyedia perkhidmatan jalur lebar Telekom Malaysia (TM) perlu mencari jalan penyelesaian bagi meningkatkan akses capaian Internet ke seluruh negara, kata Menteri Komunikasi dan Multimedia, Gobind Singh Deo. Beliau berkata menjadi dasar kerajaan untuk membekalkan akses Internet jalur lebar kepada semua dan memberi penekanan kepada kualiti perkhidmatan yang terbaik. "Dasar kerajaan untuk bekalkan akses kepada semua bukan sekadar pembekalan sahaja tetapi beri penekanan kepada kualiti perkhidmatan yang baik dan dapat bersaing dengan negara lain pada tahap antarabangsa," kata Gobind Singh menerusi catatan di laman rasmi Twitter beliau, malam tadi. Beliau berkata demikian sebagai respons terhadap aduan beberapa pengguna Twitter berhubung akses Internet yang masih tidak stabil serta harga yang tidak berpatutan di beberapa lokasi di seluruh negara.'
1010
1111 Using fuzzy for topics
1212----------------------
1313
14- .. code :: ipython3
14+ .. code :: python
1515
1616 malaya.topic_influencer.fuzzy_topic(news)
1717
@@ -24,7 +24,7 @@ Using fuzzy for topics
2424
2525
2626
27- .. code :: ipython3
27+ .. code :: python
2828
2929 malaya.topic_influencer.fuzzy_topic(second_news)
3030
@@ -49,7 +49,7 @@ Using fuzzy for topics
4949 Using fuzzy for influencers
5050---------------------------
5151
52- .. code :: ipython3
52+ .. code :: python
5353
5454 malaya.topic_influencer.fuzzy_influencer(news)
5555
@@ -62,7 +62,7 @@ Using fuzzy for influencers
6262
6363
6464
65- .. code :: ipython3
65+ .. code :: python
6666
6767 malaya.topic_influencer.fuzzy_influencer(second_news)
6868
@@ -78,7 +78,7 @@ Using fuzzy for influencers
7878 Using fuzzy for location
7979------------------------
8080
81- .. code :: ipython3
81+ .. code :: python
8282
8383 malaya.topic_influencer.fuzzy_location(' saya suka makan sate di sungai petani' )
8484
@@ -94,7 +94,7 @@ Using fuzzy for location
9494 Check location from a string
9595----------------------------
9696
97- .. code :: ipython3
97+ .. code :: python
9898
9999 malaya.topic_influencer.is_location(' sungai petani' )
100100
@@ -110,11 +110,11 @@ Check location from a string
110110 Train TF-IDF for topics analysis
111111--------------------------------
112112
113- .. code :: ipython3
113+ .. code :: python
114114
115115 topics_similarity = malaya.topic_influencer.fast_topic()
116116
117- .. code :: ipython3
117+ .. code :: python
118118
119119 topics_similarity.get_similarity(news)
120120
@@ -133,11 +133,11 @@ Train TF-IDF for topics analysis
133133 Train TF-IDF for influencers analysis
134134-------------------------------------
135135
136- .. code :: ipython3
136+ .. code :: python
137137
138138 influencers_similarity = malaya.topic_influencer.fast_influencer()
139139
140- .. code :: ipython3
140+ .. code :: python
141141
142142 influencers_similarity.get_similarity(news)
143143
@@ -153,7 +153,7 @@ Train TF-IDF for influencers analysis
153153
154154
155155
156- .. code :: ipython3
156+ .. code :: python
157157
158158 influencers_similarity.get_similarity(second_news)
159159
@@ -176,7 +176,7 @@ Train TF-IDF for influencers analysis
176176 Train skip-thought model for topics analysis
177177--------------------------------------------
178178
179- .. code :: ipython3
179+ .. code :: python
180180
181181 deep_topic = malaya.topic_influencer.skipthought_topic()
182182
@@ -190,7 +190,7 @@ Train skip-thought model for topics analysis
190190 minibatch loop: 100%|██████████| 157/157 [01:44<00:00, 1.70it/s, cost=0.00152]
191191
192192
193- .. code :: ipython3
193+ .. code :: python
194194
195195 deep_topic.get_similarity(news, anchor = 0.5 )
196196
@@ -211,7 +211,7 @@ Train skip-thought model for topics analysis
211211
212212
213213
214- .. code :: ipython3
214+ .. code :: python
215215
216216 deep_topic.get_similarity(second_news, anchor = 0.5 )
217217
@@ -237,7 +237,7 @@ Train skip-thought model for topics analysis
237237 Train skip-thought model for influencers analysis
238238-------------------------------------------------
239239
240- .. code :: ipython3
240+ .. code :: python
241241
242242 deep_influencer = malaya.topic_influencer.skipthought_influencer()
243243
@@ -256,7 +256,7 @@ Train skip-thought model for influencers analysis
256256 minibatch loop: 100%|██████████| 20/20 [00:12<00:00, 1.62it/s, cost=0.219]
257257
258258
259- .. code :: ipython3
259+ .. code :: python
260260
261261 deep_influencer.get_similarity(news, anchor = 0.5 )
262262
@@ -269,7 +269,7 @@ Train skip-thought model for influencers analysis
269269
270270
271271
272- .. code :: ipython3
272+ .. code :: python
273273
274274 deep_influencer.get_similarity(second_news, anchor = 0.5 )
275275
@@ -285,7 +285,7 @@ Train skip-thought model for influencers analysis
285285 Train siamese network for topics analysis
286286-----------------------------------------
287287
288- .. code :: ipython3
288+ .. code :: python
289289
290290 deep_topic = malaya.topic_influencer.siamese_topic()
291291 print (deep_topic.get_similarity(news, anchor = 0.5 ))
@@ -294,11 +294,11 @@ Train siamese network for topics analysis
294294
295295 .. parsed-literal ::
296296
297- minibatch loop: 100%|██████████| 157/157 [01:50<00:00, 1.67it/s, accuracy=1, cost=0.114]
298- minibatch loop: 100%|██████████| 157/157 [01:49<00:00, 1.69it/s, accuracy=1, cost=0.0739]
299- minibatch loop: 100%|██████████| 157/157 [01:49<00:00, 1.66it/s, accuracy=1, cost=0.0686]
300- minibatch loop: 100%|██████████| 157/157 [01:50<00:00, 1.68it/s, accuracy=1, cost=0.0279]
301- minibatch loop: 100%|██████████| 157/157 [01:49<00:00, 1.70it/s, accuracy=1, cost=0.0193]
297+ minibatch loop: 100%|██████████| 157/157 [01:50<00:00, 1.67it/s, accuracy=1, cost=0.114]
298+ minibatch loop: 100%|██████████| 157/157 [01:49<00:00, 1.69it/s, accuracy=1, cost=0.0739]
299+ minibatch loop: 100%|██████████| 157/157 [01:49<00:00, 1.66it/s, accuracy=1, cost=0.0686]
300+ minibatch loop: 100%|██████████| 157/157 [01:50<00:00, 1.68it/s, accuracy=1, cost=0.0279]
301+ minibatch loop: 100%|██████████| 157/157 [01:49<00:00, 1.70it/s, accuracy=1, cost=0.0193]
302302
303303
304304 .. parsed-literal ::
@@ -307,7 +307,7 @@ Train siamese network for topics analysis
307307 ['politik', 'kkmm', 'bumiputra', 'malaysia-indonesia', 'menteri pertahanan', 'motogp', 'programming language', 'twitter', 'lgbt', 'gaji menteri', 'singapura']
308308
309309
310- .. code :: ipython3
310+ .. code :: python
311311
312312 print (deep_topic.get_similarity(news, anchor = 0.7 ))
313313 print (deep_topic.get_similarity(second_news, anchor = 0.7 ))
@@ -322,7 +322,7 @@ Train siamese network for topics analysis
322322 Train siamese network for influencers analysis
323323----------------------------------------------
324324
325- .. code :: ipython3
325+ .. code :: python
326326
327327 deep_influencer = malaya.topic_influencer.siamese_influencer()
328328
@@ -336,7 +336,7 @@ Train siamese network for influencers analysis
336336 minibatch loop: 100%|██████████| 20/20 [00:14<00:00, 1.47it/s, accuracy=0.875, cost=0.0637]
337337
338338
339- .. code :: ipython3
339+ .. code :: python
340340
341341 deep_influencer.get_similarity(news, anchor = 0.5 )
342342
@@ -349,7 +349,7 @@ Train siamese network for influencers analysis
349349
350350
351351
352- .. code :: ipython3
352+ .. code :: python
353353
354354 deep_influencer.get_similarity(second_news, anchor = 0.5 )
355355
@@ -359,5 +359,3 @@ Train siamese network for influencers analysis
359359 .. parsed-literal ::
360360
361361 ['gobind singh deo']
362-
363-
0 commit comments