Skip to content

Commit a53f1a0

Browse files
authored
Tried to improved formatting in README.md (not yet fully done)
1 parent 4d7cc0b commit a53f1a0

File tree

1 file changed

+89
-87
lines changed

1 file changed

+89
-87
lines changed

README.md

Lines changed: 89 additions & 87 deletions
Original file line numberDiff line numberDiff line change
@@ -2,96 +2,98 @@ Code and data for:
22
Baranger, D.A.A., Halchenko, Y.O., Satz, S., Ragozzino, R., Iyengar, S., Swartz, H.A., Manelis, A. Neuroimage: Clinical (2021).
33
Aberrant levels of cortical myelin distinguish individuals with depressive disorders from healthy controls.
44

5-
#============= FOLDER STRUCTURE ============= #
5+
# FOLDER STRUCTURE
66

77
MethodX_data/:
88

9-
data
10-
--mri_derivatives
11-
-----primary/ses-01 ** surface-level T1w/T2w ratio and cortical thickness images for subjects in primary analyses
12-
-----followup ** surface-level T1w/T2w ratio and cortical thickness images for the subject with follow-up data who converted
13-
-------ses-01 ** follow-up subject session 1
14-
-------ses-02 ** follow-up subject session 2
15-
--other_input ** clinical, demographic, and parcellated T1w/T2w ratio data
16-
outputs
17-
--cvs ** output of posthoc analyses varying the number of cross-validation folds
18-
----loocv_inneronly ** output of posthoc analyses varying the number of inner cross-validation folds
19-
--glmnet ** output of primary glmnet analysis
20-
--permutations ** output of permutation analyses
21-
--preprocessing ** output of preprocessing outlier detection
22-
--regressions ** output of regression analyses
23-
scripts
24-
--analyses ** scripts for primary analyses, including glmnet, permutations, and regressions
25-
--figures ** scripts to create figures in the paper
26-
--followup ** scripts for post hoc analyses
27-
--preprocessing ** scripts for parcellating mri derivative files and outlier detection
28-
29-
30-
#============= FOLDER CONTENTS ============= #
31-
32-
MethodX_data/data/mri_derivatives/primary/ses-01:
33-
sub-******.L.midthickness.32k_fs_LR.surf.gii ** left cortical thickness file
34-
sub-******.R.midthickness.32k_fs_LR.surf.gii ** right cortical thickness file
35-
sub-******.SmoothedMyelinMap_BC.32k_fs_LR.dscalar.nii ** cortical myelin cifti file
36-
37-
MethodX_data/data/other_input:
38-
converted_participant_parcels_bothsessions.xlsx ** Cortical myelin values for the follow-up subject who converted
39-
data_360parcels_Glasser32K.csv ** Cortical myelin for 360 Glasser parcels, output of scripts/preprocessing/parcellate.R
40-
data_clinical_and_parcels_all.csv ** Participant demographics, clinical variables, and cortical myelin values
41-
data_dictionary.csv ** Description of columns in data_clinical_and_parcels_all.csv
42-
ElasticNet_variables.csv ** All variables used for elastic net analyses
43-
glmnet_performance.csv ** Performance metrics for glmnet/LDA classifier
44-
45-
MethodX_data/outputs/cvs:
46-
glmnet_leave-one-out_nested_1uniquepair_removed_HC_UD_[x]_outer_[y]_internalfolds_2021-07-02.txt ** output of follow up analyses, varying both the internal [y] and outer [x] cv folds
47-
48-
MethodX_data/outputs/cvs/loocv_inneronly:
49-
glmnet_leave-one-out_nested_1uniquepair_removed_HC_UD_[i]_internalfolds_2021-07-02.txt ** output of follow up analyses, varying the number of inner cv folds [i] (retaining 2 pairs held-out)
50-
51-
MethodX_data/outputs/glmnet:
52-
glmnet_variable_selection.csv ** frequency of variable selection in true and permutation analyses
53-
glmnet_with_age_sex_iq_leave-one-out_nested_1uniquepair_removed_HC_UD_2020-11-26.txt ** main results, output of scripts/analyses/glmnet_with_LDA_myelin_paper.R
54-
predict.followup.txt ** predicted class for followup participant who converted mid-study
55-
56-
MethodX_data/outputs/permutations:
57-
split[i]_glmnet_permuted_labels_10times_leave-one-out_nested_with_age_sex_iq_1uniquepair_removed_HC_UD_2021-02-22 ** Outputs of permutation analyses (100 permutations per file)
58-
split[i]_glmnet_permuted_sets_10times_leave-one-out_nested_with_age_sex_iq_1uniquepair_removed_HC_UD_2021-02-22 ** Outputs of permutation analyses (100 permutations per file) - record of all permutation combinations
59-
glmnet_permuted_labels_100times_for_leave-one-out_nested_with_age_sex_iq_1uniquepair_removed_HC_UD_2021-02-22.txt ** Combined all label files
60-
glmnet_permuted_sets_100times_for_leave-one-out_nested_with_age_sex_iq_1uniquepair_removed_HC_UD_2021-02-22.txt ** Combined all set files
61-
62-
MethodX_data/outputs/preprocessing:
63-
outlier.results.csv ** results of parcel outlier detection
64-
65-
MethodX_data/outputs/regressions:
66-
regression_dd_control_myelin.csv ** results of regression analyses between control/dd and myelin
67-
regression_demo_clin_myelin.csv ** results of regression analyses between clinical/demographic variables and myelin
68-
regression_performance_myelin.csv ** results of regression analyses between lda accuracy and myelin
69-
70-
MethodX_data/scripts/analyses:
71-
glmnet_with_LDA_myelin_paper.R ** Nested cross-validation elastic net regression with LDA (primary analysis)
72-
permuted_glmnet_with_LDA_myelin_paper.R ** Permutation analyses
73-
process_glmnet_output.R ** Compute performance metrics of the primary analysis
74-
regression_lda_performance_and_clinical.R ** Regression analyses between model accuracy and clinical variables
75-
regression_myelin_and_clinical.R ** Regression analyses between cortical myelin and clinical variables
76-
regression_myelin_patients_vs_controls.R ** regression analyses comparing myelin values in patients and controls
77-
78-
MethodX_data/scripts/figures:
79-
brain_plot.R ** Code for Figure 3
80-
performance_plots.R ** Code for Figure 2
81-
plot_antidepressants.R ** Code for Supplemental Figure 3
82-
83-
MethodX_data/scripts/followup:
84-
glmnet_with_LDA_myelin_paper_cvs_outerloop.R ** repeating the glmnet analyses, varying both the number of inner and outer cv folds
85-
glmnet_with_LDA_myelin_paper_cvs.R ** repeating the glmnet analyses, varying the number of inner cv folds
86-
Predict_converted.R ** predict the group (control, DD) of the participant who converted
87-
process_cvs_parcels.R ** process the output of glmnet_with_LDA_myelin_paper_cvs.R & glmnet_with_LDA_myelin_paper_cvs_outerloop.R
88-
89-
MethodX_data/scripts/preprocessing:
90-
outlier_regions.R ** Detects outlier parcels
91-
parcellate.R ** Parcellate mri derivative files to compute mean T1w/T2w ratio value for each parcel
92-
93-
94-
#============= Other needed files ============= #
9+
data/
10+
mri_derivatives/
11+
primary/ses-01 ** surface-level T1w/T2w ratio and cortical thickness images for subjects in primary analyses
12+
followup/ ** surface-level T1w/T2w ratio and cortical thickness images for the subject with follow-up data who converted
13+
ses-01/ ** follow-up subject session 1
14+
ses-02/ ** follow-up subject session 2
15+
other_input/ ** clinical, demographic, and parcellated T1w/T2w ratio data
16+
outputs/
17+
cvs/ ** output of posthoc analyses varying the number of cross-validation folds
18+
loocv_inneronly ** output of posthoc analyses varying the number of inner cross-validation folds
19+
glmnet/ ** output of primary glmnet analysis
20+
permutations/ ** output of permutation analyses
21+
preprocessing/ ** output of preprocessing outlier detection
22+
regressions/ ** output of regression analyses
23+
scripts/
24+
analyses/ ** scripts for primary analyses, including glmnet, permutations, and regressions
25+
figures/ ** scripts to create figures in the paper
26+
followup/ ** scripts for post hoc analyses
27+
preprocessing/ ** scripts for parcellating mri derivative files and outlier detection
28+
29+
30+
# FOLDER CONTENTS
31+
32+
MethodX_data/data/mri_derivatives/primary/ses-01/sub-*/
33+
sub-*.L.midthickness.32k_fs_LR.surf.gii ** left cortical thickness file
34+
sub-*.R.midthickness.32k_fs_LR.surf.gii ** right cortical thickness file
35+
sub-*.SmoothedMyelinMap_BC.32k_fs_LR.dscalar.nii ** cortical myelin cifti file
36+
37+
MethodX_data/data/other_input/
38+
converted_participant_parcels_bothsessions.xlsx ** Cortical myelin values for the follow-up subject who converted
39+
data_360parcels_Glasser32K.csv ** Cortical myelin for 360 Glasser parcels, output of scripts/preprocessing/parcellate.R
40+
data_clinical_and_parcels_all.csv ** Participant demographics, clinical variables, and cortical myelin values
41+
data_dictionary.csv ** Description of columns in data_clinical_and_parcels_all.csv
42+
ElasticNet_variables.csv ** All variables used for elastic net analyses
43+
glmnet_performance.csv ** Performance metrics for glmnet/LDA classifier
44+
45+
MethodX_data/outputs/cvs/
46+
glmnet_leave-one-out_nested_1uniquepair_removed_HC_UD_[x]_outer_[y]_internalfolds_2021-07-02.txt
47+
** output of follow up analyses, varying both the internal [y] and outer [x] cv folds
48+
49+
MethodX_data/outputs/cvs/loocv_inneronly/
50+
glmnet_leave-one-out_nested_1uniquepair_removed_HC_UD_[i]_internalfolds_2021-07-02.txt
51+
** output of follow up analyses, varying the number of inner cv folds [i] (retaining 2 pairs held-out)
52+
53+
MethodX_data/outputs/glmnet/
54+
glmnet_variable_selection.csv ** frequency of variable selection in true and permutation analyses
55+
glmnet_with_age_sex_iq_leave-one-out_nested_1uniquepair_removed_HC_UD_2020-11-26.txt ** main results, output of scripts/analyses/glmnet_with_LDA_myelin_paper.R
56+
predict.followup.txt ** predicted class for followup participant who converted mid-study
57+
58+
MethodX_data/outputs/permutations/
59+
split[i]_glmnet_permuted_labels_10times_leave-one-out_nested_with_age_sex_iq_1uniquepair_removed_HC_UD_2021-02-22 ** Outputs of permutation analyses (100 permutations per file)
60+
split[i]_glmnet_permuted_sets_10times_leave-one-out_nested_with_age_sex_iq_1uniquepair_removed_HC_UD_2021-02-22 ** Outputs of permutation analyses (100 permutations per file) - record of all permutation combinations
61+
glmnet_permuted_labels_100times_for_leave-one-out_nested_with_age_sex_iq_1uniquepair_removed_HC_UD_2021-02-22.txt ** Combined all label files
62+
glmnet_permuted_sets_100times_for_leave-one-out_nested_with_age_sex_iq_1uniquepair_removed_HC_UD_2021-02-22.txt ** Combined all set files
63+
64+
MethodX_data/outputs/preprocessing/
65+
outlier.results.csv ** results of parcel outlier detection
66+
67+
MethodX_data/outputs/regressions/
68+
regression_dd_control_myelin.csv ** results of regression analyses between control/dd and myelin
69+
regression_demo_clin_myelin.csv ** results of regression analyses between clinical/demographic variables and myelin
70+
regression_performance_myelin.csv ** results of regression analyses between lda accuracy and myelin
71+
72+
MethodX_data/scripts/analyses/
73+
glmnet_with_LDA_myelin_paper.R ** Nested cross-validation elastic net regression with LDA (primary analysis)
74+
permuted_glmnet_with_LDA_myelin_paper.R ** Permutation analyses
75+
process_glmnet_output.R ** Compute performance metrics of the primary analysis
76+
regression_lda_performance_and_clinical.R ** Regression analyses between model accuracy and clinical variables
77+
regression_myelin_and_clinical.R ** Regression analyses between cortical myelin and clinical variables
78+
regression_myelin_patients_vs_controls.R ** regression analyses comparing myelin values in patients and controls
79+
80+
MethodX_data/scripts/figures/
81+
brain_plot.R ** Code for Figure 3
82+
performance_plots.R ** Code for Figure 2
83+
plot_antidepressants.R ** Code for Supplemental Figure 3
84+
85+
MethodX_data/scripts/followup/
86+
glmnet_with_LDA_myelin_paper_cvs_outerloop.R ** repeating the glmnet analyses, varying both the number of inner and outer cv folds
87+
glmnet_with_LDA_myelin_paper_cvs.R ** repeating the glmnet analyses, varying the number of inner cv folds
88+
Predict_converted.R ** predict the group (control, DD) of the participant who converted
89+
process_cvs_parcels.R ** process the output of glmnet_with_LDA_myelin_paper_cvs.R & glmnet_with_LDA_myelin_paper_cvs_outerloop.R
90+
91+
MethodX_data/scripts/preprocessing/
92+
outlier_regions.R ** Detects outlier parcels
93+
parcellate.R ** Parcellate mri derivative files to compute mean T1w/T2w ratio value for each parcel
94+
95+
96+
# Other needed files
9597

9698
https://balsa.wustl.edu/88mp ** Glasser 360 parcellation atlas
9799

0 commit comments

Comments
 (0)