forked from akyrola/shotgun
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcommon.h
123 lines (86 loc) · 2.82 KB
/
common.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
/*
Copyright [2011] [Aapo Kyrola, Joseph Bradley, Danny Bickson, Carlos Guestrin / Carnegie Mellon University]
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
//
// Common datastructures for lasso and logistic regression
// We call values of vector x "features" and "weights"
//
#ifndef __SHOTGUN_COMMON_
#define __SHOTGUN_COMMON_
#include <cmath>
#include <iostream>
#include <memory.h>
#include <cstdio>
#include <string>
#include <vector>
#include <queue>
#include <list>
#include <map>
#ifndef MEX
#define mexPrintf printf
#else
#include "mex.h"
#endif
#ifndef DISABLE_OMP
#include <omp.h>
#endif
#include "cas_array.h" // Concurrent array
typedef double valuetype_t;
inline bool isnan_(double x) {
return !(x<=0.0 || x>0);
}
#define sqr(x) ((x)*(x))
// Simple sparse array
struct sparse_array {
std::vector<unsigned int> idxs;
std::vector<valuetype_t> values;
int length() {
return idxs.size();
}
void add(unsigned int _idx, valuetype_t value) {
idxs.push_back(_idx);
values.push_back(value);
}
};
struct feature {
valuetype_t covar; // Covariane of a a column
valuetype_t Ay_i; // (Ay)_i
};
struct shotgun_data {
// Column-wise sparse matrix representation.
std::vector<sparse_array> * A_cols, * A_rows;
// Vector of observations
std::vector<valuetype_t> y;
std::vector<valuetype_t> x;
std::vector<feature> feature_consts;
// Problem size and configuration
int nx; // Number of features/weights
int ny; // Number of datapoints
bool parallel;
// Lookup tables for optimization
cas_array<valuetype_t> Ax;
cas_array<valuetype_t> expAx;
cas_array<double> Gmax;
omp_lock_t * lock;
shotgun_data() {
lock = new omp_lock_t();
omp_init_lock(lock);
}
~shotgun_data() {
}
};
void convert_2_mat(const char * filename, shotgun_data * prob);
void convert_2_vec(const char * filename, shotgun_data * prob);
double solveLasso(shotgun_data * prob, double lambda, int regpathlength, double threshold, int maxiter, int verbose);
void compute_logreg(shotgun_data * prob, double lambda, double term_threshold, int max_iter, int verbose, bool &all_zero);
void write_to_file(const char * filename, int * I, int * J, double * val, int M, int N, int nnz);
#endif