forked from akyrola/shotgun
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlogreg.cpp
364 lines (305 loc) · 11.2 KB
/
logreg.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
/*
Copyright [2011] [Aapo Kyrola, Joseph Bradley, Danny Bickson, Carlos Guestrin / Carnegie Mellon University]
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF Alogregprob->ny KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
//
// Implementation of Shotgun Logreg - a parallel Logistic Lasso solver - for OpenMP.
// Optimization problem
// \arg \max_x \sum log(1+exp(-yAx) - \lambda |x|_1
//
// Based on Coordinate Descent Newton algorithm described in
// Yuan, Chang et al. :
// A Comparison of Optimization Methods and Software for Large-scale L1-regularized Linear Classification
//
// \author Aapo Kyrola [email protected]
// modified by Danny Bickson, CMU
#include "common.h"
shotgun_data * logregprob;
// Parameters
double cdn_beta = 0.5;
double cdn_sigma = 0.01;
double Gmax;
double Gmax_old;
double Gmax_init;
double * xjneg;
int pos_y, neg_y;
bool * active;
bool shuffle = true;
int test_ratio = 10;
double compute_objective_logreg(double lambda, double * l1x = NULL, double * loglikelihood = NULL, int * _l0 = NULL,
double * testobj = NULL);
inline double sign(double a) {
return (a<0 ? -1 : (a == 0 ? 0 : 1));
}
inline void swap(int &t1, int &t2) { int tmp=t2; t2=t1; t1=tmp; }
// Computes L_j'(0) and L_j''
// See: Yuan, Chang et al. :
// A Comparison of Optimization Methods and Software for Large-scale L1-regularized Linear Classification
// equation (25)
inline void logreg_cdn_derivandH(double lambda, int x_i, double &G, double& H) {
G = H = 0;
sparse_array& col = (*logregprob->A_cols)[x_i];
assert(col.length()>0);
for(int i=0; i<col.length(); i++) {
int rowi = col.idxs[i];
double val = col.values[i];
double exp_wTxind = logregprob->expAx[rowi];
double tmp1 = val/(1+exp_wTxind);
double tmp2 = tmp1;
double tmp3 = tmp2*exp_wTxind;
G += tmp2;
H += tmp1*tmp3;
}
G = -G + xjneg[x_i];
G /= lambda;
H /= lambda;
if (H<1e-5) {
H = 1e-5;
}
}
// L_j(x + diff*e_j)-L_j(x) (see function g_xi())
// (eq. 18)
inline double logreg_cdn_Ldiff(double lambda, int x_i, double diff) {
double sum = 0.0;
sparse_array& col = (*logregprob->A_cols)[x_i];
for(int i=0; i<col.length(); i++) {
int rowi = col.idxs[i];
double dc = diff * col.values[i];
double expdiff = exp(dc);
double expAXdiff = logregprob->expAx[rowi] * expdiff;
//assert(!isnan(logregprob->expAx[rowi]));
//assert(expAXdiff + expdiff != 0);
double ds = log((expAXdiff+1)/(expAXdiff+expdiff));
//assert(!isnan(ds));
sum += ds;
}
if (isnan_(sum)){
fprintf(stderr, "Got numerical error: please verify that in your dataset there are no columns of matrix A with all zeros. Encountered error in column %d\n", x_i);
exit(1);
}
return 1.0/lambda * (diff*xjneg[x_i] + sum);
}
// Equation 17. One-variable function that equals the change in loss function
// when x_i is change by z
double g_xi(double z, int x_i, double lambda) {
double xv = logregprob->x[x_i];
return std::abs(xv+z) - std::abs(xv) + logreg_cdn_Ldiff(lambda, x_i, z);
}
// Compute A'A in parallel. Note: could also compute in demand?
void initialize_all() {
logregprob->x.resize(logregprob->nx);
logregprob->Ax.resize(logregprob->ny);
logregprob->expAx.resize(logregprob->ny);
logregprob->Gmax.resize(1);
active = (bool *) calloc(logregprob->nx,sizeof(bool));
xjneg = (double *) calloc(logregprob->nx,sizeof(double));
pos_y = 0;
for(int i=0; i<logregprob->ny; i++) {
logregprob->expAx[i] = 1.0; // since(exp(0) = 1)
pos_y += (logregprob->y[i] == 1);
}
neg_y = logregprob->ny-pos_y;
assert(pos_y > 0 && neg_y > 0);
for(int i=0; i<logregprob->nx; i++) active[i] = true;
// use the trick that log(1+exp(x))=log(1+exp(-x))+x
#pragma omp parallel for
for(int i=0; i<logregprob->nx; i++) {
sparse_array& col = (*logregprob->A_cols)[i];
for(int j=0; j<col.length(); j++) {
if (logregprob->y[col.idxs[j]] == -1)
xjneg[i] += col.values[j];
}
}
}
void recompute_expAx() {
#pragma omp parallel for
for(int i=0; i<logregprob->ny; i++) {
double Ax=0;
sparse_array &row = (*logregprob->A_rows)[i];
for(int j=0; j<row.length(); j++) {
Ax += logregprob->x[row.idxs[j]]*row.values[j];
}
logregprob->expAx[i] = exp(Ax);
}
}
// Yua, Chang, Hsieh and Lin: A Comparison of Optimization Methods and Software for Large-scale L1-regularized Linear Classification; p. 14
double shoot_cdn(int x_i, double lambda) {
// Compute d: (equation 29), i.e the solution to the quadratic approximation of the function
// for weight x_i
if (!active[x_i]) return 0.0;
double violation = 0.0;
double xv = logregprob->x[x_i];
double Ld0, Ldd0;
logreg_cdn_derivandH(lambda, x_i, Ld0, Ldd0);
double Gp = (Ld0+1);
double Gn = (Ld0-1);
// Shrinking (practically copied from LibLinear)
if (xv == 0) {
if (Gp<0) {
violation = -Gp;
} else if (Gn > 0) {
violation = Gn;
} else if(Gp>Gmax_old/logregprob->ny && Gn<-Gmax_old/logregprob->ny) {
// Remove
active[x_i] = false;
return 0.0;
}
} else if(xv > 0)
violation = fabs(Gp);
else
violation = fabs(Gn);
// TODO: should use a reduction here! Or lock.
//if (Gmax < violation)
// Gmax = violation;
logregprob->Gmax.max(0, violation);
//printf("node %d violation %g Ld0 %g Ldd0 %g Gp %g Gn %g xv %g \n", x_i, violation, Ld0, Ldd0, Gp, Gn, xv);
// Newton direction d
double rhs = Ldd0*xv;
double d;
if (Gp<= rhs) {
d = -(Gp/Ldd0);
} else if (Gn >= rhs) {
d = -(Gn/Ldd0);
} else {
d = -xv;
}
if (std::abs(d) < 1e-12) {
return 0.0;
}
// Small optimization
d = std::min(std::max(d,-10.0),10.0);
// Backtracking line search (with Armijo-type of condition) (eq. 30)
int iter=0;
int max_num_linesearch=20;
double gamma = 1.0; // Note: Yuan, Chang et al. use lambda instead of gamma
double delta = (Ld0 * d + std::abs(xv+d) - std::abs(xv));
double rhs_c = cdn_sigma * delta;
do {
double change_in_obj = g_xi(d, x_i, lambda);
if (change_in_obj <= gamma * rhs_c) {
// Found ok.
logregprob->x[x_i] += d;
// Update dot products (Ax)
sparse_array &col = (*logregprob->A_cols)[x_i];
#pragma omp parallel for
for(int i=0; i<col.length(); i++) {
logregprob->expAx.mul(col.idxs[i], exp(d * col.values[i]));
}
return std::abs(d);
}
gamma *= 0.5;
d *= 0.5;
} while(++iter < max_num_linesearch);
recompute_expAx();
return 0.0;
}
/**
* Execute "shoot" update of a feature.
*/
void shoot_logreg(int x_i, double lambda) {
// Some columns may be empty:
if ((*logregprob->A_cols)[x_i].length() == 0) return;
shoot_cdn(x_i, lambda);
}
/**
* Main optimization loop.
* Note: this version of code does NOT have special version for sequential
* version. Sequential version is slightly lighter than parallel version because
* it can use a more efficient operation to maintain the active set. In practice, this
* has little effect. Also, it does not need to have a atomic array for maintaining Ax.
* For the experiments in the paper, a special sequential code was used for fairness.
*/
void compute_logreg(shotgun_data * prob, double lambda, double term_threshold, int max_iter, int verbose, bool & all_zero) {
all_zero = false;
logregprob = prob;
//double l1x, loglikelihood;
int iterations = 0;//, t=0;
long long int num_of_shoots = 0;
std::vector<int> shuffled_indices;
for(int j=0; j<logregprob->nx; j++) shuffled_indices.push_back(j);
Gmax_old = 1e30;
// Adjust threshold similarly as liblinear
initialize_all();
term_threshold = term_threshold*std::min(pos_y,neg_y)/double(logregprob->ny);
while(true) {
int active_size = logregprob->nx;
num_of_shoots += active_size;
// Randomization
if (shuffle)
for(int j=0; j<active_size; j++) {
int i = j+rand()%(active_size-j);
swap(shuffled_indices[i], shuffled_indices[j]);
}
/* Main parallel loop */
#pragma omp parallel for
for(int s=0; s<active_size; s++) {
int x_i = shuffled_indices[s];
shoot_logreg(x_i, lambda);
}
/* Gmax handling */
Gmax_old = logregprob->Gmax[0];
if (iterations == 0) {
Gmax_init = Gmax_old;
}
iterations++;
//std::cout << Gmax.get_value() << " " << Gmax_init << " " << term_threshold*Gmax_init << std::endl;
if (iterations > max_iter && max_iter>0) {
omp_set_lock(prob->lock);
mexPrintf("Exceeded max iterations: %d\n", max_iter);
omp_unset_lock(prob->lock);
break;
}
for(int i=0; i<logregprob->nx; i++) shuffled_indices[i] = i;
active_size = logregprob->nx;
for(int s=0; s<active_size; s++) {
int j = shuffled_indices[s];
if (!active[j]) {
active_size--;
swap(shuffled_indices[s], shuffled_indices[active_size]);
s--;
}
}
if (logregprob->Gmax[0] <= term_threshold*Gmax_init) {
// std::cout << active_size << std::endl;
if (active_size == logregprob->nx) {
printf("Threshold encountered.\n");
break;
} else {
Gmax_old = 1e30;
for(int i=0; i<logregprob->nx; i++) active[i] = true;
active_size=logregprob->nx;
recompute_expAx();
//continue;
}
}
if (verbose){
double l1x=0, loglikelihood=0;
int l0=0;
double obj = compute_objective_logreg(lambda, &l1x, &loglikelihood, &l0, NULL);
printf("objective is: %g l1: %g loglikelihood %g l0: %d\n", obj, l1x, loglikelihood, l0);
if (l1x == 0)
all_zero = true;
}
}// end iterations
if (!verbose){
double l1x=0, loglikelihood=0;
int l0=0;
double obj = compute_objective_logreg(lambda, &l1x, &loglikelihood, &l0, NULL);
if (l1x == 0)
all_zero = true;
printf("objective is: %g l1: %g loglikelihood %g l0: %d\n", obj, l1x, loglikelihood, l0);
}
delete[] active;
delete[] xjneg;
omp_set_lock(prob->lock);
mexPrintf("Finished Shotgun CDN in %d iterations\n", iterations);
omp_unset_lock(prob->lock);
}