forked from akyrola/shotgun
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmm_lasso.cpp
165 lines (147 loc) · 4.75 KB
/
mm_lasso.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
/*
Copyright [2011] [Aapo Kyrola, Joseph Bradley, Danny Bickson, Carlos Guestrin / Carnegie Mellon University]
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF Alogregprob->ny KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
Wrapper code for running shotgun lasso using matrix market format.
Written by Danny Bickson, CMU
*/
#include <stdio.h>
#include "common.h"
void usage(char * argv[]){
fprintf(stderr, "Usage: %s\n\t-m matrix A in sparse matrix market format\n"
"\t -v vector y in sparse matrix market format\n"
"\t -o output file name (will contain solution vector x, default is x.mtx)\n"
"\t -a algorithm (1=lasso, 2=logitic regresion, 3 = find min lambda for all zero solution)\n"
"\t -t convergence threshold (default 1e-5)\n"
"\t -k solution path length (for lasso)\n"
"\t -i max_iter (default 100)\n"
"\t -n num_threads (default 2)\n"
"\t -l lammbda - positive weight constant (default 1)\n"
"\t -V verbose: 1=verbose, 0=quiet (default 0) \n", argv[0]);
exit(1);
}
int main(int argc, char * argv[]){
bool inputmat = false; bool inputvec = false;
double threshold = 1e-5;
int K = 0;
int verbose = 0;
int maxiter = 100;
int numthreads = 2;
double lambda = 1;
int algorithm = 1;
char c;
char matfile[256]={0};
char vecfile[256]={0};
char outfile[256]={0};
strcpy(outfile, "x.mtx");
while ((c = getopt (argc, argv, "m:v:o:a:t:k:i:n:l:V:")) != -1)
switch (c)
{
case 'm':
strncpy(matfile, optarg, 256);
inputmat = true;
break;
case 'v':
strncpy(vecfile, optarg, 256);
inputvec = true;
break;
case 'o':
strncpy(outfile, optarg, 256);
break;
case 'a':
algorithm = atoi(optarg);
if (algorithm < 1 || algorithm > 3){
fprintf(stderr, "Algorithm should be 1-3\n");
exit(1);
}
break;
case 't':
threshold = atof(optarg);
break;
case 'k':
K = atoi(optarg);
break;
case 'i':
maxiter=atoi(optarg);
break;
case 'n':
numthreads = atoi(optarg);
if (numthreads < 1){
fprintf(stderr, "Wrong number of threads %d\n", numthreads);
exit(1);
}
break;
case 'l':
lambda=atof(optarg);
break;
case 'V':
verbose = atoi(optarg);
break;
default:
usage(argv);
}
if (!inputvec || !inputmat){
fprintf(stderr, "Matrix and vector files are mandaroty inputs\n");
usage(argv);
}
shotgun_data prob;
convert_2_mat(matfile, &prob);
convert_2_vec(vecfile, &prob);
#ifndef DISABLE_OMP
omp_set_num_threads(numthreads);
mexPrintf("OMP threads = %d\n", numthreads);
#endif
mexPrintf("d = %d, n=%d, y-dim=%u\n", prob.nx,prob.ny, (unsigned int)prob.y.size());
if ((int)prob.y.size() != prob.ny){
fprintf(stderr, "Error: wrong size of observation vector\n");
exit(1);
}
srand(time(NULL));
bool all_zero = false;
if (algorithm == 1) {
solveLasso(&prob, lambda, K, threshold, maxiter, verbose);
} else if (algorithm == 2) {
compute_logreg(&prob, lambda, threshold, maxiter, verbose, all_zero);
} else if (algorithm == 3){
double max_lambda = 1e10;
double min_lambda = 1e-10;
int tries = 0;
lambda = max_lambda;
while (tries < 50){
printf("Trying out lambda %g", lambda);
compute_logreg(&prob, lambda, threshold, 3, verbose, all_zero);
if (all_zero){
max_lambda = lambda;
lambda = (max_lambda + min_lambda) / 2;
printf("OK\n");
all_zero = false;
}
else {
min_lambda = lambda;
lambda = (max_lambda + min_lambda) / 2;
printf("Too small\n");
}
tries++;
}
printf("Found minimal lambda with all zero solution %g\n", lambda);
}
else {
usage(argv);
}
int * I = new int[prob.nx];
int * J = new int[prob.nx];
double * val = new double[prob.nx];
for (int i=0; i< prob.nx; i++){
I[i] = i;
J[i] = 0;
val[i] = prob.x[i];
}
write_to_file(outfile, I,J,val,prob.nx,1,prob.nx);
}