|
| 1 | +use std::collections::{HashMap, VecDeque}; |
| 2 | +use rand::Rng; |
| 3 | + |
| 4 | +// Adaptive Edge Exploration (AEE) Algorithm |
| 5 | +// |
| 6 | +// This algorithm explores a graph by adaptively choosing edges based on their |
| 7 | +// weights and the graph's structure. It aims to find paths that balance between |
| 8 | +// shortest distance and interesting graph features, introducing some randomness |
| 9 | +// to explore diverse paths. |
| 10 | + |
| 11 | +// Define the Graph structure |
| 12 | +struct Graph { |
| 13 | + edges: HashMap<usize, Vec<(usize, usize)>>, |
| 14 | +} |
| 15 | + |
| 16 | +// Define the Node structure for the exploration queue |
| 17 | +#[derive(Clone, Eq, PartialEq)] |
| 18 | +struct Node { |
| 19 | + vertex: usize, |
| 20 | + path: Vec<usize>, |
| 21 | + total_cost: usize, |
| 22 | + interest_score: f64, |
| 23 | +} |
| 24 | + |
| 25 | +impl Graph { |
| 26 | + // Constructor for Graph |
| 27 | + fn new() -> Self { |
| 28 | + Graph { |
| 29 | + edges: HashMap::new(), |
| 30 | + } |
| 31 | + } |
| 32 | + |
| 33 | + // Method to add an edge to the graph |
| 34 | + fn add_edge(&mut self, from: usize, to: usize, cost: usize) { |
| 35 | + self.edges.entry(from).or_insert(Vec::new()).push((to, cost)); |
| 36 | + self.edges.entry(to).or_insert(Vec::new()); // Ensure all vertices are in the map |
| 37 | + } |
| 38 | + |
| 39 | + // Adaptive Edge Exploration (AEE) algorithm |
| 40 | + fn adaptive_edge_exploration(&self, start: usize, end: usize) -> Option<(Vec<usize>, usize)> { |
| 41 | + let mut rng = rand::thread_rng(); |
| 42 | + let mut queue = VecDeque::new(); |
| 43 | + let mut visited = HashMap::new(); |
| 44 | + |
| 45 | + queue.push_back(Node { |
| 46 | + vertex: start, |
| 47 | + path: vec![start], |
| 48 | + total_cost: 0, |
| 49 | + interest_score: 0.0, |
| 50 | + }); |
| 51 | + |
| 52 | + while let Some(current) = queue.pop_front() { |
| 53 | + if current.vertex == end { |
| 54 | + return Some((current.path, current.total_cost)); |
| 55 | + } |
| 56 | + |
| 57 | + if let Some(&prev_cost) = visited.get(¤t.vertex) { |
| 58 | + if current.total_cost >= prev_cost { |
| 59 | + continue; |
| 60 | + } |
| 61 | + } |
| 62 | + |
| 63 | + visited.insert(current.vertex, current.total_cost); |
| 64 | + |
| 65 | + if let Some(neighbors) = self.edges.get(¤t.vertex) { |
| 66 | + let mut adaptive_neighbors = neighbors.clone(); |
| 67 | + adaptive_neighbors.sort_by(|a, b| { |
| 68 | + let a_score = self.calculate_interest_score(a.0, ¤t); |
| 69 | + let b_score = self.calculate_interest_score(b.0, ¤t); |
| 70 | + b_score.partial_cmp(&a_score).unwrap() |
| 71 | + }); |
| 72 | + |
| 73 | + for &(neighbor, edge_cost) in adaptive_neighbors.iter() { |
| 74 | + if !visited.contains_key(&neighbor) || current.total_cost + edge_cost < visited[&neighbor] { |
| 75 | + let mut new_path = current.path.clone(); |
| 76 | + new_path.push(neighbor); |
| 77 | + let new_interest_score = self.calculate_interest_score(neighbor, ¤t); |
| 78 | + |
| 79 | + queue.push_back(Node { |
| 80 | + vertex: neighbor, |
| 81 | + path: new_path, |
| 82 | + total_cost: current.total_cost + edge_cost, |
| 83 | + interest_score: new_interest_score, |
| 84 | + }); |
| 85 | + } |
| 86 | + } |
| 87 | + } |
| 88 | + |
| 89 | + // Introduce some randomness to explore different paths |
| 90 | + if rng.gen::<f64>() < 0.1 { |
| 91 | + queue.make_contiguous().shuffle(&mut rng); |
| 92 | + } |
| 93 | + } |
| 94 | + |
| 95 | + None // No path found |
| 96 | + } |
| 97 | + |
| 98 | + // Calculate interest score for a neighbor |
| 99 | + fn calculate_interest_score(&self, neighbor: usize, current: &Node) -> f64 { |
| 100 | + let neighbor_degree = self.edges.get(&neighbor).map_or(0, |edges| edges.len()); |
| 101 | + let path_length = current.path.len() as f64; |
| 102 | + let total_cost = current.total_cost as f64; |
| 103 | + |
| 104 | + // Combine factors to create an interest score |
| 105 | + (neighbor_degree as f64).sqrt() + (1.0 / (path_length + 1.0)) + (1.0 / (total_cost + 1.0)) |
| 106 | + } |
| 107 | +} |
| 108 | + |
| 109 | +#[cfg(test)] |
| 110 | +mod tests { |
| 111 | + use super::*; |
| 112 | + |
| 113 | + #[test] |
| 114 | + fn test_simple_path() { |
| 115 | + let mut graph = Graph::new(); |
| 116 | + graph.add_edge(0, 1, 4); |
| 117 | + graph.add_edge(1, 2, 3); |
| 118 | + graph.add_edge(2, 3, 2); |
| 119 | + |
| 120 | + let result = graph.adaptive_edge_exploration(0, 3); |
| 121 | + assert!(result.is_some()); |
| 122 | + let (path, cost) = result.unwrap(); |
| 123 | + assert_eq!(path, vec![0, 1, 2, 3]); |
| 124 | + assert_eq!(cost, 9); |
| 125 | + } |
| 126 | + |
| 127 | + #[test] |
| 128 | + fn test_multiple_paths() { |
| 129 | + let mut graph = Graph::new(); |
| 130 | + graph.add_edge(0, 1, 4); |
| 131 | + graph.add_edge(0, 2, 1); |
| 132 | + graph.add_edge(1, 3, 1); |
| 133 | + graph.add_edge(2, 1, 2); |
| 134 | + graph.add_edge(2, 3, 5); |
| 135 | + |
| 136 | + let result = graph.adaptive_edge_exploration(0, 3); |
| 137 | + assert!(result.is_some()); |
| 138 | + let (path, cost) = result.unwrap(); |
| 139 | + assert!(path.starts_with(&[0]) && path.ends_with(&[3])); |
| 140 | + assert!(cost <= 6); // The cost should be at most 6 (0->2->1->3 or 0->1->3) |
| 141 | + } |
| 142 | + |
| 143 | + #[test] |
| 144 | + fn test_no_path() { |
| 145 | + let mut graph = Graph::new(); |
| 146 | + graph.add_edge(0, 1, 4); |
| 147 | + graph.add_edge(1, 2, 3); |
| 148 | + graph.add_edge(3, 4, 2); |
| 149 | + |
| 150 | + let result = graph.adaptive_edge_exploration(0, 4); |
| 151 | + assert_eq!(result, None); |
| 152 | + } |
| 153 | + |
| 154 | + #[test] |
| 155 | + fn test_graph_with_cycle() { |
| 156 | + let mut graph = Graph::new(); |
| 157 | + graph.add_edge(0, 1, 1); |
| 158 | + graph.add_edge(1, 2, 2); |
| 159 | + graph.add_edge(2, 3, 3); |
| 160 | + graph.add_edge(3, 1, 1); |
| 161 | + graph.add_edge(3, 4, 4); |
| 162 | + |
| 163 | + let result = graph.adaptive_edge_exploration(0, 4); |
| 164 | + assert!(result.is_some()); |
| 165 | + let (path, cost) = result.unwrap(); |
| 166 | + assert!(path.starts_with(&[0]) && path.ends_with(&[4])); |
| 167 | + assert!(cost <= 10); // The cost should be at most 10 (0->1->2->3->4) |
| 168 | + } |
| 169 | + |
| 170 | + #[test] |
| 171 | + fn test_large_graph() { |
| 172 | + let mut graph = Graph::new(); |
| 173 | + for i in 0..1000 { |
| 174 | + graph.add_edge(i, i + 1, 1); |
| 175 | + } |
| 176 | + graph.add_edge(0, 1000, 999); |
| 177 | + |
| 178 | + let result = graph.adaptive_edge_exploration(0, 1000); |
| 179 | + assert!(result.is_some()); |
| 180 | + let (path, cost) = result.unwrap(); |
| 181 | + assert!(path.starts_with(&[0]) && path.ends_with(&[1000])); |
| 182 | + assert!(cost <= 999); // The cost should be at most 999 (direct path from 0 to 1000) |
| 183 | + } |
| 184 | +} |
0 commit comments