|
| 1 | +from typing import List |
| 2 | +from langchain_core.documents import Document |
| 3 | +from langchain_core.retrievers import BaseRetriever |
| 4 | +from langchain_openai import AzureOpenAIEmbeddings |
| 5 | +from marklogic import Client |
| 6 | + |
| 7 | + |
| 8 | +class MarkLogicVectorQueryRetriever(BaseRetriever): |
| 9 | + |
| 10 | + client: Client |
| 11 | + embedding_generator: AzureOpenAIEmbeddings |
| 12 | + max_results: int = 10 |
| 13 | + collections: List[str] = [] |
| 14 | + tde_schema: str |
| 15 | + tde_view: str |
| 16 | + scoring_method: str |
| 17 | + |
| 18 | + @classmethod |
| 19 | + def create( |
| 20 | + cls, |
| 21 | + client: Client, |
| 22 | + embedding_generator: AzureOpenAIEmbeddings, |
| 23 | + tde_schema: str = None, |
| 24 | + tde_view: str = None, |
| 25 | + scoring_method: str = "score-bm25", |
| 26 | + ): |
| 27 | + return cls( |
| 28 | + client=client, |
| 29 | + embedding_generator=embedding_generator, |
| 30 | + tde_schema=tde_schema or "demo", |
| 31 | + tde_view=tde_view or "posts", |
| 32 | + scoring_method=scoring_method, |
| 33 | + ) |
| 34 | + |
| 35 | + def _build_javascript_query_query(self, query, query_embedding): |
| 36 | + # Returning first self.max_results documents based on token limitations |
| 37 | + # |
| 38 | + # If limits are hit, consider different models: |
| 39 | + # gpt-35-turbo (0125): 16,385/4,096 |
| 40 | + # gpt-35-turbo (1106): 16,385/4,096 |
| 41 | + # gpt-35-turbo-16k (0613): |
| 42 | + |
| 43 | + # This JavaScript consists of two queries. |
| 44 | + # The first is a standard cts search, searching for words that match those used |
| 45 | + # in the chat question. |
| 46 | + # The second query is an Optic query that uses the top documents from the CTS |
| 47 | + # query to do a vector search to re-order the results. |
| 48 | + |
| 49 | + search_words = [] |
| 50 | + for word in query.split(): |
| 51 | + search_words.append(word.lower().replace("?", "")) |
| 52 | + return """ |
| 53 | + const op = require('/MarkLogic/optic'); |
| 54 | + const ovec = require('/MarkLogic/optic/optic-vec.xqy'); |
| 55 | + const result = |
| 56 | + fn.subsequence(cts.search(cts.andQuery([ |
| 57 | + cts.wordQuery({}), |
| 58 | + cts.collectionQuery({}) |
| 59 | + ]),["{}"]), 1, {}); |
| 60 | + let uris = []; |
| 61 | + for(const doc of result){{ |
| 62 | + uris.push(xdmp.nodeUri(doc)) |
| 63 | + }} |
| 64 | + const qv = vec.vector({}) |
| 65 | +
|
| 66 | + const rows = op.fromView('{}','{}','') |
| 67 | + .where(op.in(op.col('uri'), uris)) |
| 68 | + .bind(op.as('summaryCosineSim', op.vec.cosineSimilarity(op.vec.vector(op.col('embedding')),qv))) |
| 69 | + .orderBy(op.desc(op.col('summaryCosineSim'))) |
| 70 | + .result(); |
| 71 | + rows; |
| 72 | + """.format( |
| 73 | + search_words, |
| 74 | + self.collections, |
| 75 | + self.scoring_method, |
| 76 | + self.max_results, |
| 77 | + query_embedding, |
| 78 | + self.tde_schema, |
| 79 | + self.tde_view, |
| 80 | + ) |
| 81 | + |
| 82 | + def _get_relevant_documents(self, query: str) -> List[Document]: |
| 83 | + print(f"Searching with query: {query}") |
| 84 | + |
| 85 | + query_embedding = self.embedding_generator.embed_query(query) |
| 86 | + javascript_query = self._build_javascript_query_query( |
| 87 | + query, query_embedding |
| 88 | + ) |
| 89 | + results = self.client.eval(javascript=javascript_query) |
| 90 | + |
| 91 | + print(f"Count of matching MarkLogic documents: {len(results)}") |
| 92 | + return map(lambda doc: Document(page_content=doc["text"]), results) |
0 commit comments