|
11 | 11 | % This is useful if only the tissue segmentation information is supposed to |
12 | 12 | % be obtained. |
13 | 13 |
|
14 | | -MRS_struct.version.segment = '201204'; |
| 14 | +MRS_struct.version.segment = '210331'; |
15 | 15 | vox = MRS_struct.p.vox(1); |
16 | 16 |
|
17 | 17 | warning('off'); % temporarily suppress warning messages |
18 | 18 |
|
19 | 19 | % First check if SPM12 is installed and on the search path |
20 | | -spmversion = fileparts(which('spm')); |
21 | | -if isempty(spmversion) |
| 20 | +spm_version = fileparts(which('spm')); |
| 21 | +if isempty(spm_version) |
22 | 22 | msg = 'SPM not found! Please install SPM12 and make sure it is in your search path.'; |
23 | 23 | msg = hyperlink('https://www.fil.ion.ucl.ac.uk/spm/software/spm12', 'SPM12', msg); |
24 | 24 | error(msg); |
25 | | -elseif strcmpi(spmversion(end-3:end),'spm8') |
| 25 | +elseif strcmpi(spm_version(end-3:end),'spm8') |
26 | 26 | msg = ['SPM8 detected. Gannet no longer supports SPM8. ' ... |
27 | 27 | 'Please install SPM12 and make sure it is in your search path.']; |
28 | 28 | msg = hyperlink('https://www.fil.ion.ucl.ac.uk/spm/software/spm12', 'SPM12', msg); |
29 | 29 | error(msg); |
30 | 30 | end |
31 | 31 |
|
32 | 32 | kk = 1; |
33 | | -setupSPM = 1; |
| 33 | +setup_spm = 1; |
34 | 34 |
|
35 | 35 | for ii = 1:length(MRS_struct.metabfile) |
36 | 36 |
|
37 | | - % 1 - Take nifti from GannetCoRegister and segment it in SPM |
| 37 | + % 1. Take NIfTI from GannetCoRegister and segment it in SPM |
38 | 38 |
|
39 | 39 | [T1dir, T1name, T1ext] = fileparts(MRS_struct.mask.(vox{kk}).T1image{ii}); |
40 | 40 | struc = MRS_struct.mask.(vox{kk}).T1image{ii}; |
|
49 | 49 | filesExist(jj) = exist(tmp{jj}, 'file'); %#ok<AGROW> |
50 | 50 | end |
51 | 51 | if ~all(filesExist) |
52 | | - if setupSPM |
53 | | - % Set up SPM for batch processing (do it once and only when needed) |
| 52 | + if setup_spm |
| 53 | + % Set up SPM for batch processing (do it once per batch) |
54 | 54 | spm('defaults','fmri'); |
55 | 55 | spm_jobman('initcfg'); |
56 | | - setupSPM = 0; |
| 56 | + setup_spm = 0; |
57 | 57 | end |
58 | 58 | CallSPM12segmentation(struc); |
59 | 59 | end |
60 | 60 |
|
61 | | - % 2 - Determine GM, WM and CSF fractions for each voxel |
| 61 | + % 2. Calculate QC metrics and GM, WM, and CSF fractions for each voxel |
62 | 62 |
|
63 | 63 | if strcmp(T1dir,'') |
64 | 64 | T1dir = '.'; |
|
73 | 73 | WMvol = spm_vol(WM); |
74 | 74 | CSFvol = spm_vol(CSF); |
75 | 75 | airvol = spm_vol(air); |
76 | | - |
| 76 | + |
77 | 77 | % Segmentation quality metrics (Chua et al. JMRI, 2009; Ganzetti et |
78 | 78 | % al. Front. Neuroinform., 2016; Esteban et al. PLOS One, 2017) |
79 | 79 | T1 = spm_vol(struc); |
80 | 80 | T1_tmp = T1.private.dat(:,:,:); |
81 | | - |
| 81 | + |
82 | 82 | WMvol_tmp = WMvol.private.dat(:,:,:); |
83 | 83 | WMvol_tmp(WMvol_tmp < 0.9) = NaN; |
84 | 84 | WMvol_thresh = WMvol_tmp .* T1_tmp; |
85 | 85 | WMvol_thresh = WMvol_thresh(:); |
86 | | - |
| 86 | + |
87 | 87 | GMvol_tmp = GMvol.private.dat(:,:,:); |
88 | 88 | GMvol_tmp(GMvol_tmp < 0.9) = NaN; |
89 | 89 | GMvol_thresh = GMvol_tmp .* T1_tmp; |
90 | 90 | GMvol_thresh = GMvol_thresh(:); |
91 | | - |
| 91 | + |
92 | 92 | airvol_tmp = airvol.private.dat(:,:,:); |
93 | 93 | airvol_tmp(airvol_tmp < 0.9) = NaN; |
94 | 94 | airvol_thresh = airvol_tmp .* T1_tmp; |
95 | 95 | airvol_thresh = airvol_thresh(:); |
96 | | - |
97 | | - MRS_struct.out.tissue.CV_WM(ii) = std(WMvol_thresh,'omitnan') / mean(WMvol_thresh,'omitnan'); |
98 | | - MRS_struct.out.tissue.CV_GM(ii) = std(GMvol_thresh,'omitnan') / mean(GMvol_thresh,'omitnan'); |
99 | | - MRS_struct.out.tissue.CJV(ii) = (std(WMvol_thresh,'omitnan') + std(GMvol_thresh,'omitnan')) ... |
100 | | - / abs(mean(WMvol_thresh,'omitnan') - mean(GMvol_thresh,'omitnan')); |
101 | | - MRS_struct.out.tissue.CNR(ii) = abs(mean(WMvol_thresh,'omitnan') - mean(GMvol_thresh,'omitnan')) / ... |
102 | | - sqrt(var(airvol_thresh,'omitnan') + var(WMvol_thresh,'omitnan') + var(GMvol_thresh,'omitnan')); |
| 96 | + |
| 97 | + MRS_struct.out.tissue.CV_WM(ii) = std(WMvol_thresh, 'omitnan') / mean(WMvol_thresh, 'omitnan'); |
| 98 | + MRS_struct.out.tissue.CV_GM(ii) = std(GMvol_thresh, 'omitnan') / mean(GMvol_thresh, 'omitnan'); |
| 99 | + MRS_struct.out.tissue.CJV(ii) = (std(WMvol_thresh, 'omitnan') + std(GMvol_thresh, 'omitnan')) ... |
| 100 | + / abs(mean(WMvol_thresh, 'omitnan') - mean(GMvol_thresh, 'omitnan')); |
| 101 | + MRS_struct.out.tissue.CNR(ii) = abs(mean(WMvol_thresh, 'omitnan') - mean(GMvol_thresh, 'omitnan')) / ... |
| 102 | + sqrt(var(airvol_thresh, 'omitnan') + var(WMvol_thresh, 'omitnan') + var(GMvol_thresh, 'omitnan')); |
103 | 103 |
|
104 | 104 | T1_tmp = T1_tmp(:); |
105 | 105 | n_vox = numel(T1_tmp); |
106 | 106 | efc_max = n_vox * (1/sqrt(n_vox)) * log(1/sqrt(n_vox)); |
107 | 107 | b_max = sqrt(sum(T1_tmp.^2)); |
108 | 108 | MRS_struct.out.tissue.EFC(ii) = (1/efc_max) .* sum((T1_tmp ./ b_max) .* log((T1_tmp + eps) ./ b_max)); |
109 | | - |
| 109 | + |
110 | 110 | % Loop over voxels if PRIAM |
111 | 111 | for kk = 1:length(vox) |
112 | 112 |
|
|
115 | 115 |
|
116 | 116 | % GM |
117 | 117 | O_GMvox.fname = fullfile(a, [b '_GM' c]); |
118 | | - O_GMvox.descrip = 'GMmasked_MRS_Voxel_Mask'; |
| 118 | + O_GMvox.descrip = 'MRS_voxel_mask_GM'; |
119 | 119 | O_GMvox.dim = voxmaskvol.dim; |
120 | 120 | O_GMvox.dt = voxmaskvol.dt; |
121 | 121 | O_GMvox.mat = voxmaskvol.mat; |
|
124 | 124 |
|
125 | 125 | % WM |
126 | 126 | O_WMvox.fname = fullfile(a, [b '_WM' c]); |
127 | | - O_WMvox.descrip = 'WMmasked_MRS_Voxel_Mask'; |
| 127 | + O_WMvox.descrip = 'MRS_voxel_mask_WM'; |
128 | 128 | O_WMvox.dim = voxmaskvol.dim; |
129 | 129 | O_WMvox.dt = voxmaskvol.dt; |
130 | 130 | O_WMvox.mat = voxmaskvol.mat; |
|
133 | 133 |
|
134 | 134 | % CSF |
135 | 135 | O_CSFvox.fname = fullfile(a, [b '_CSF' c]); |
136 | | - O_CSFvox.descrip = 'CSFmasked_MRS_Voxel_Mask'; |
| 136 | + O_CSFvox.descrip = 'MRS_voxel_mask_CSF'; |
137 | 137 | O_CSFvox.dim = voxmaskvol.dim; |
138 | 138 | O_CSFvox.dt = voxmaskvol.dt; |
139 | 139 | O_CSFvox.mat = voxmaskvol.mat; |
140 | 140 | CSF_voxmask_vol = CSFvol.private.dat(:,:,:) .* voxmaskvol.private.dat(:,:,:); |
141 | 141 | O_CSFvox = spm_write_vol(O_CSFvox, CSF_voxmask_vol); |
142 | 142 |
|
143 | | - % 3 - Calculate a CSF-corrected i.u. value and output it to the structure |
| 143 | + % 3. Calculate a CSF-corrected i.u. value and output it to the structure |
144 | 144 |
|
145 | 145 | GMsum = sum(sum(sum(O_GMvox.private.dat(:,:,:)))); |
146 | 146 | WMsum = sum(sum(sum(O_WMvox.private.dat(:,:,:)))); |
|
154 | 154 | MRS_struct.out.(vox{kk}).tissue.fWM(ii) = fWM; |
155 | 155 | MRS_struct.out.(vox{kk}).tissue.fCSF(ii) = fCSF; |
156 | 156 |
|
157 | | - % 4 - Build output |
| 157 | + % 4. Build output |
158 | 158 |
|
159 | 159 | if ishandle(104) |
160 | 160 | clf(104); |
|
296 | 296 |
|
297 | 297 | warning('on'); % turn warnings back on |
298 | 298 |
|
299 | | -end |
300 | | - |
301 | 299 |
|
302 | 300 | function img_montage = PlotSegmentedVoxels(struc, voxoff, voxmaskvol, O_GMvox, O_WMvox, O_CSFvox) |
303 | 301 |
|
|
368 | 366 |
|
369 | 367 | ha = subplot(2,3,1:3); |
370 | 368 | imagesc(img_montage); |
371 | | -axis equal; |
372 | | -axis tight; |
373 | | -axis off; |
| 369 | +axis equal tight off; |
374 | 370 | text(floor(size(mask_t,2)/2), 20, 'Voxel', 'Color', [1 1 1], 'FontSize', 20, 'HorizontalAlignment', 'center'); |
375 | 371 | text(floor(size(mask_t,2)) + floor(size(mask_t,2)/2), 20, 'GM', 'Color', [1 1 1], 'FontSize', 20, 'HorizontalAlignment', 'center'); |
376 | 372 | text(2*floor(size(mask_t,2)) + floor(size(mask_t,2)/2), 20, 'WM', 'Color', [1 1 1], 'FontSize', 20, 'HorizontalAlignment', 'center'); |
377 | 373 | text(3*floor(size(mask_t,2)) + floor(size(mask_t,2)/2), 20, 'CSF', 'Color', [1 1 1], 'FontSize', 20, 'HorizontalAlignment', 'center'); |
378 | | -set(ha,'pos',[0 0.17 1 1]); |
379 | | - |
380 | | -end |
| 374 | +set(ha, 'pos', [0 0.17 1 1]); |
381 | 375 |
|
382 | 376 |
|
383 | 377 |
|
0 commit comments