forked from JuliaMath/Interpolations.jl
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgradient.jl
192 lines (171 loc) · 7.37 KB
/
gradient.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
using Test, Interpolations, DualNumbers, LinearAlgebra
@testset "Gradients" begin
nx = 10
f1(x) = sin((x-3)*2pi/(nx-1) - 1)
g1gt(x) = 2pi/(nx-1) * cos((x-3)*2pi/(nx-1) - 1)
A1 = Float64[f1(x) for x in 1:nx]
g1 = Array{Float64}(undef, 1)
A2 = rand(Float64, nx, nx) * 100
g2 = Array{Float64}(undef, 2)
for (A, g) in ((A1, g1), (A2, g2))
# Gradient of Constant should always be 0
itp = interpolate(A, BSpline(Constant()))
for x in InterpolationTestUtils.thirds(axes(A))
@test all(iszero, @inferred(Interpolations.gradient(itp, x...)))
@test all(iszero, @inferred(Interpolations.gradient!(g, itp, x...)))
end
itp = interpolate(A, BSpline(Linear()))
check_gradient(itp, g)
i = first(eachindex(itp))
@test Interpolations.gradient(itp, i) == Interpolations.gradient(itp, Tuple(i)...)
for BC in (Flat,Line,Free,Periodic,Reflect,Natural), GT in (OnGrid, OnCell)
itp = interpolate(A, BSpline(Quadratic(BC(GT()))))
check_gradient(itp, g)
i = first(eachindex(itp))
@test Interpolations.gradient(itp, i) == Interpolations.gradient(itp, Tuple(i)...)
end
for BC in (Line, Flat, Free, Periodic), GT in (OnGrid, OnCell)
itp = interpolate(A, BSpline(Cubic(BC(GT()))))
check_gradient(itp, g)
I = first(eachindex(itp))
@test Interpolations.gradient(itp, I) == Interpolations.gradient(itp, Tuple(I)...)
end
end
# Since Linear is OnGrid in the domain, check the gradients between grid points
itp1 = interpolate(Float64[f1(x) for x in 1:nx],
BSpline(Linear()))
itp2 = interpolate((1:nx-1,), Float64[f1(x) for x in 1:nx-1],
Gridded(Linear()))
for itp in (itp1, itp2)
for x in 2.5:nx-1.5
@test ≈(g1gt(x),(Interpolations.gradient(itp,x))[1],atol=abs(0.1 * g1gt(x)))
@test ≈(g1gt(x),(Interpolations.gradient!(g1,itp,x))[1],atol=abs(0.1 * g1gt(x)))
@test ≈(g1gt(x),g1[1],atol=abs(0.1 * g1gt(x)))
end
for i = 1:10
x = rand()*(nx-2)+1.5
checkbounds(Bool, itp, x) || continue
gtmp = Interpolations.gradient(itp, x)[1]
xd = dual(x, 1)
@test epsilon(itp(xd)) ≈ gtmp
end
end
# test gridded on a non-uniform grid
knots = (1.0:0.3:nx-1,)
itp_grid = interpolate(knots, Float64[f1(x) for x in knots[1]],
Gridded(Linear()))
for x in 1.5:0.5:nx-1.5
@test ≈(g1gt(x),(Interpolations.gradient(itp_grid,x))[1],atol=abs(0.5 * g1gt(x)))
@test ≈(g1gt(x),(Interpolations.gradient!(g1,itp_grid,x))[1],atol=abs(0.5 * g1gt(x)))
@test ≈(g1gt(x),g1[1],atol=abs(0.5 * g1gt(x)))
end
# Since Quadratic is OnCell in the domain, check gradients at grid points
itp1 = interpolate(Float64[f1(x) for x in 1:nx-1],
BSpline(Quadratic(Periodic(OnCell()))))
for x in 2:nx-1
@test ≈(g1gt(x),(Interpolations.gradient(itp1,x))[1],atol=abs(0.05 * g1gt(x)))
@test ≈(g1gt(x),(Interpolations.gradient!(g1,itp1,x))[1],atol=abs(0.05 * g1gt(x)))
@test ≈(g1gt(x),g1[1],atol=abs(0.1 * g1gt(x)))
end
for i = 1:10
x = rand()*(nx-2)+1.5
gtmp = Interpolations.gradient(itp1, x)[1]
xd = dual(x, 1)
@test epsilon(itp1(xd)) ≈ gtmp
end
# For a quadratic function and quadratic interpolation, we expect an
# "exact" answer
# 1d
c = 2.3
a = 8.1
o = 1.6
qfunc = x -> a*(x .- c).^2 .+ o
dqfunc = x -> 2*a*(x .- c)
xg = Float64[1:5;]
y = qfunc(xg)
iq = interpolate(y, BSpline(Quadratic(Free(OnCell()))))
x = 1.8
@test iq(x) ≈ qfunc(x)
@test (Interpolations.gradient(iq,x))[1] ≈ dqfunc(x)
# 2d (biquadratic)
p = [(x-1.75)^2 for x = 1:7]
A = p*p'
iq = interpolate(A, BSpline(Quadratic(Free(OnCell()))))
@test iq[4,4] ≈ (4 - 1.75) ^ 4
@test iq[4,3] ≈ (4 - 1.75) ^ 2 * (3 - 1.75) ^ 2
g = Interpolations.gradient(iq, 4, 3)
@test g[1] ≈ 2 * (4 - 1.75) * (3 - 1.75) ^ 2
@test g[2] ≈ 2 * (4 - 1.75) ^ 2 * (3 - 1.75)
iq = interpolate!(copy(A), BSpline(Quadratic(InPlace(OnCell()))))
@test iq[4,4] ≈ (4 - 1.75) ^ 4
@test iq[4,3] ≈ (4 - 1.75) ^ 2 * (3 - 1.75) ^ 2
g = Interpolations.gradient(iq, 4, 3)
@test ≈(g[1],2 * (4 - 1.75) * (3 - 1.75) ^ 2,atol=0.03)
@test ≈(g[2],2 * (4 - 1.75) ^ 2 * (3 - 1.75),atol=0.2)
# InPlaceQ is exact for an underlying quadratic
iq = interpolate!(copy(A), BSpline(Quadratic(InPlaceQ(OnCell()))))
@test iq[4,4] ≈ (4 - 1.75) ^ 4
@test iq[4,3] ≈ (4 - 1.75) ^ 2 * (3 - 1.75) ^ 2
g = Interpolations.gradient(iq, 4, 3)
@test g[1] ≈ 2 * (4 - 1.75) * (3 - 1.75) ^ 2
@test g[2] ≈ 2 * (4 - 1.75) ^ 2 * (3 - 1.75)
A2 = rand(Float64, nx, nx) * 100
gni = [1.0]
for BC in (Flat,Line,Free,Periodic,Reflect,Natural), GT in (OnGrid, OnCell)
itp_a = interpolate(A2, (BSpline(Linear()), BSpline(Quadratic(BC(GT())))))
itp_b = interpolate(A2, (BSpline(Quadratic(BC(GT()))), BSpline(Linear())))
itp_c = interpolate(A2, (NoInterp(), BSpline(Quadratic(BC(GT())))))
itp_d = interpolate(A2, (BSpline(Quadratic(BC(GT()))), NoInterp()))
for i = 1:10
x = rand()*(nx-2)+1.5
y = rand()*(nx-2)+1.5
xd = dual(x, 1)
yd = dual(y, 1)
gtmp = Interpolations.gradient(itp_a, x, y)
@test length(gtmp) == 2
@test epsilon(itp_a(xd,y)) ≈ gtmp[1]
@test epsilon(itp_a(x,yd)) ≈ gtmp[2]
gtmp = Interpolations.gradient(itp_b, x, y)
@test length(gtmp) == 2
@test epsilon(itp_b(xd,y)) ≈ gtmp[1]
@test epsilon(itp_b(x,yd)) ≈ gtmp[2]
ix, iy = round(Int, x), round(Int, y)
gtmp = Interpolations.gradient(itp_c, ix, y)
@test length(gtmp) == 1
@test epsilon(itp_c(ix,yd)) ≈ gtmp[1]
gni[1] = NaN
Interpolations.gradient!(gni, itp_c, ix, y)
@test gni[1] ≈ gtmp[1]
gtmp = Interpolations.gradient(itp_d, x, iy)
@test length(gtmp) == 1
@test epsilon(itp_d(xd,iy)) ≈ gtmp[1]
gni[1] = NaN
Interpolations.gradient!(gni, itp_d, x, iy)
@test gni[1] ≈ gtmp[1]
end
end
@testset "Monotonic" begin
x = [0.0, 0.2, 0.5, 0.6, 0.9, 1.0]
ys = [[-3.0, 0.0, 5.0, 10.0, 18.0, 22.0],
[10.0, 0.0, -5.0, 10.0, -8.0, -2.0]]
grid = 0.0:0.1:1.0
itypes = [LinearMonotonicInterpolation(),
FiniteDifferenceMonotonicInterpolation(),
CardinalMonotonicInterpolation(0.0),
CardinalMonotonicInterpolation(0.5),
CardinalMonotonicInterpolation(1.0),
FritschCarlsonMonotonicInterpolation(),
FritschButlandMonotonicInterpolation(),
SteffenMonotonicInterpolation()]
for y in ys
for it in itypes
itp = interpolate(x, y, it)
for t in grid
gradval = epsilon(itp(dual(t, 1.0)))
@test Interpolations.gradient1(itp, t) ≈ gradval atol = 1.e-12
@test Interpolations.gradient(itp, [t])[1] ≈ gradval atol = 1.e-12
end
end
end
end
end