forked from JuliaMath/Interpolations.jl
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhessian.jl
72 lines (63 loc) · 2.59 KB
/
hessian.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
using Test, Interpolations, LinearAlgebra, ForwardDiff
@testset "Hessians" begin
nx = 5
k = 2pi/(nx-1)
f1(x) = sin(k*(x-3) - 1)
A1 = Float64[f1(x) for x in 1:nx]
h1 = Array{Float64}(undef, 1, 1)
A2 = rand(Float64, nx, nx) * 100
h2 = Array{Float64}(undef, 2, 2)
for (A, h) in ((A1, h1), (A2, h2))
for itp in (interpolate(A, BSpline(Constant())),
interpolate(A, BSpline(Linear())))
if ndims(A) == 1
# Hessian of Constant and Linear should always be 0 in 1d
for x in InterpolationTestUtils.thirds(axes(A))
@test all(iszero, Interpolations.hessian(itp, x...))
@test all(iszero, Interpolations.hessian!(h, itp, x...))
end
else
for x in InterpolationTestUtils.thirds(axes(A))
check_hessian(itp, h)
end
end
end
for BC in (Flat,Line,Free,Periodic,Reflect,Natural), GT in (OnGrid, OnCell)
itp = interpolate(A, BSpline(Quadratic(BC(GT()))))
check_hessian(itp, h)
I = first(eachindex(itp))
@test Interpolations.hessian(itp, I) == Interpolations.hessian(itp, Tuple(I)...)
end
for BC in (Line, Flat, Free, Periodic), GT in (OnGrid, OnCell)
itp = interpolate(A, BSpline(Cubic(BC(GT()))))
check_hessian(itp, h)
end
end
itp = interpolate(A2, (BSpline(Quadratic(Flat(OnCell()))), NoInterp()))
v = A2[:, 2]
itpcol = interpolate(v, BSpline(Quadratic(Flat(OnCell()))))
@test Interpolations.hessian(itp, 3.2, 2) == Interpolations.hessian(itpcol, 3.2)
@testset "Monotonic" begin
x = [0.0, 0.2, 0.5, 0.6, 0.9, 1.0]
ys = [[-3.0, 0.0, 5.0, 10.0, 18.0, 22.0],
[10.0, 0.0, -5.0, 10.0, -8.0, -2.0]]
grid = 0.0:0.1:1.0
itypes = [LinearMonotonicInterpolation(),
FiniteDifferenceMonotonicInterpolation(),
CardinalMonotonicInterpolation(0.0),
CardinalMonotonicInterpolation(0.5),
CardinalMonotonicInterpolation(1.0),
FritschCarlsonMonotonicInterpolation(),
FritschButlandMonotonicInterpolation(),
SteffenMonotonicInterpolation()]
for y in ys
for it in itypes
itp = interpolate(x, y, it)
for t in grid
hessval = ForwardDiff.hessian(u -> itp(u[1]), [t])[1, 1]
@test Interpolations.hessian1(itp, t) ≈ hessval atol = 1.e-12
end
end
end
end
end