Skip to content

Commit d4fbf22

Browse files
authored
minor gen (#1783)
1 parent 1583908 commit d4fbf22

File tree

2 files changed

+10
-6
lines changed

2 files changed

+10
-6
lines changed

CHANGELOG_UNRELEASED.md

Lines changed: 4 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -95,6 +95,10 @@
9595
- in `lebesgue_integrable.v`:
9696
+ weaken an hypothesis of lemma `finite_measure_integrable_cst`
9797

98+
- in `derive.v`:
99+
+ definition `jacobian`
100+
+ lemmas `deriveEjacobian`, `differentiable_coord`
101+
98102
### Deprecated
99103

100104
### Removed

theories/derive.v

Lines changed: 6 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -1,4 +1,4 @@
1-
(* mathcomp analysis (c) 2017 Inria and AIST. License: CeCILL-C. *)
1+
(* mathcomp analysis (c) 2025 Inria and AIST. License: CeCILL-C. *)
22
From HB Require Import structures.
33
From mathcomp Require Import all_ssreflect ssralg ssrnum matrix interval poly.
44
From mathcomp Require Import sesquilinear.
@@ -174,7 +174,7 @@ Proof. by move=> ?; apply: DiffDef. Qed.
174174

175175
Section jacobian.
176176

177-
Definition jacobian n m (R : numFieldType) (f : 'rV[R]_n.+1 -> 'rV[R]_m.+1) p :=
177+
Definition jacobian n m (R : numFieldType) (f : 'rV[R]_n -> 'rV[R]_m) p :=
178178
lin1_mx ('d f p).
179179

180180
End jacobian.
@@ -352,7 +352,7 @@ Section DifferentialR2.
352352
Variable R : numFieldType.
353353
Implicit Type (V : normedModType R).
354354

355-
Lemma deriveEjacobian m n (f : 'rV[R]_m.+1 -> 'rV[R]_n.+1) (a v : 'rV[R]_m.+1) :
355+
Lemma deriveEjacobian m n (f : 'rV[R]_m -> 'rV[R]_n) (a v : 'rV[R]_m) :
356356
differentiable f a -> 'D_ v f a = v *m jacobian f a.
357357
Proof. by move=> /deriveE->; rewrite /jacobian mul_rV_lin1. Qed.
358358

@@ -684,10 +684,10 @@ apply: DiffDef; first exact/linear_differentiable/scalel_continuous.
684684
by rewrite diff_lin //; apply: scalel_continuous.
685685
Qed.
686686

687-
Lemma differentiable_coord m n (M : 'M[R]_(m.+1, n.+1)) i j :
688-
differentiable (fun N : 'M[R]_(m.+1, n.+1) => N i j : R ) M.
687+
Lemma differentiable_coord m n (M : 'M[R]_(m, n)) i j :
688+
differentiable (fun N : 'M[R]_(m, n) => N i j : R ) M.
689689
Proof.
690-
have @f : {linear 'M[R]_(m.+1, n.+1) -> R}.
690+
have @f : {linear 'M[R]_(m, n) -> R}.
691691
by exists (fun N : 'M[R]_(_, _) => N i j); do 2![eexists]; do ?[constructor];
692692
rewrite ?mxE// => ? *; rewrite ?mxE//; move=> ?; rewrite !mxE.
693693
rewrite (_ : (fun _ => _) = f) //; exact/linear_differentiable/coord_continuous.

0 commit comments

Comments
 (0)