@@ -937,7 +937,7 @@ Proof. by rewrite mdeg0. Qed.
937937End DegBoundMultinom.
938938
939939Definition bm0 n b := BMultinom (bm0_proof n b).
940- Implicit Arguments bm0 [n b].
940+ Arguments bm0 [n b].
941941
942942Notation "''X_{1..' n < b '}'" := (bmultinom n b).
943943Notation "''X_{1..' n < b1 , b2 '}'" := ('X_{1..n < b1} * 'X_{1..n < b2})%type.
@@ -1641,7 +1641,7 @@ rewrite [X in _=X]big_uncond //= => j /memN_msupp_eq0.
16411641by move=> ->; rewrite mulr0 freegU0.
16421642Qed .
16431643
1644- Implicit Arguments mpoly_mulwE [p q].
1644+ Arguments mpoly_mulwE [p q].
16451645
16461646Lemma mpoly_mul_revwE p q kp kq : msize p <= kp -> msize q <= kq ->
16471647 p *M q = [mpoly \sum_(m : 'X_{1..n < kq, kp}) (p *M_[(m.2, m.1)] q)].
@@ -1650,7 +1650,7 @@ move=> lep leq; rewrite -pair_bigA_curry exchange_big /=.
16501650by rewrite pair_bigA /= -mpoly_mulwE //.
16511651Qed .
16521652
1653- Implicit Arguments mpoly_mul_revwE [p q].
1653+ Arguments mpoly_mul_revwE [p q].
16541654
16551655Lemma mcoeff_poly_mul p q m k : !|m| < k ->
16561656 (p *M q)@_m =
@@ -1713,7 +1713,7 @@ rewrite -(pair_big_dep xpredT P F) (bigID Q) /= addrC.
17131713 move/mnmP/(_ i); rewrite mnmDE=> eq; move: Nle.
17141714 by rewrite eq leq_addr.
17151715Qed .
1716- Implicit Arguments mcoeff_poly_mul_lin [p q m].
1716+ Arguments mcoeff_poly_mul_lin [p q m].
17171717
17181718Local Notation mcoeff_pml := mcoeff_poly_mul_lin.
17191719
@@ -1736,7 +1736,7 @@ rewrite ltn_neqAle -subn_eq0 => /andP [ne_mhi /eqP le_mhi].
17361736apply/negbTE/eqP/mnmP=> /(_ i); rewrite !mnmBE => /eqP.
17371737by rewrite le_mhi subn0 (negbTE ne_mhi).
17381738Qed .
1739- Implicit Arguments mcoeff_poly_mul_lin_rev [p q m].
1739+ Arguments mcoeff_poly_mul_lin_rev [p q m].
17401740
17411741Local Notation mcoeff_pmlr := mcoeff_poly_mul_lin_rev.
17421742
@@ -2619,7 +2619,7 @@ move=> le_pk; rewrite /mderiv (big_mksub I) /=; first last.
26192619rewrite big_uncond //= => j /memN_msupp_eq0 ->.
26202620by rewrite mulr0 scale0r.
26212621Qed .
2622- Implicit Arguments mderivwE [p i ].
2622+ Arguments mderivwE [i p ].
26232623
26242624Lemma mcoeff_deriv i m p : p^`M(i)@_m = p@_(m + U_(i)) *+ (m i).+1.
26252625Proof .
@@ -3006,7 +3006,7 @@ rewrite /mmap (big_mksub I) ?msupp_uniq //=; first last.
30063006rewrite big_uncond //= => j /memN_msupp_eq0 ->.
30073007by rewrite raddf0 mul0r.
30083008Qed .
3009- Implicit Arguments mmapE [p].
3009+ Arguments mmapE [p].
30103010
30113011Lemma mmap_is_additive : additive (mmap f h).
30123012Proof .
@@ -3035,7 +3035,7 @@ by rewrite mcoeffC eqxx mulr1.
30353035Qed .
30363036End Additive.
30373037
3038- Implicit Arguments mmapE [f h p].
3038+ Arguments mmapE [h f p].
30393039
30403040Section Multiplicative.
30413041Variable h : 'I_n -> S.
@@ -3070,7 +3070,7 @@ Qed.
30703070End Multiplicative.
30713071End MPolyMorphism.
30723072
3073- Implicit Arguments mmapE [n R S h f p].
3073+ Arguments mmapE [n R S h f p].
30743074
30753075(* -------------------------------------------------------------------- *)
30763076Lemma mmap1_eq n (R : ringType) (f1 f2 : 'I_n -> R) m :
@@ -3328,7 +3328,7 @@ Proof.
33283328rewrite /map_mpoly; move/mmapE=> -> /=; apply/eq_bigr.
33293329by move=> i _; rewrite mmap1_id mul_mpolyC.
33303330Qed .
3331- Implicit Arguments map_mpolyE [p].
3331+ Arguments map_mpolyE [p].
33323332
33333333Lemma mcoeff_map_mpoly m p : p^f@_m = f p@_m.
33343334Proof .
@@ -3688,7 +3688,7 @@ rewrite [X in _='X_[X]](reindex (fun i : 'I_n => s i)) /=.
36883688by exists (s^-1)%g=> i _; rewrite (permK, permKV).
36893689Qed .
36903690
3691- Implicit Arguments msymE [p].
3691+ Arguments msymE [p].
36923692
36933693Lemma mcoeff_sym p (s : 'S_n) m : (msym s p)@_m = p@_(m#s).
36943694Proof .
@@ -3842,8 +3842,8 @@ by move/msupp_le_mlead; rewrite leNgt => /negbTE=> ->.
38423842Qed .
38433843End MPolySym.
38443844
3845- Implicit Arguments inj_msym [n R].
3846- Implicit Arguments symmetric [n R].
3845+ Arguments inj_msym [n R].
3846+ Arguments symmetric [n R].
38473847
38483848(* -------------------------------------------------------------------- *)
38493849Section MPolySymComp.
0 commit comments