-
Notifications
You must be signed in to change notification settings - Fork 905
/
Copy pathLinearSpline.cs
221 lines (196 loc) · 8.21 KB
/
LinearSpline.cs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
// <copyright file="LinearSpline.cs" company="Math.NET">
// Math.NET Numerics, part of the Math.NET Project
// http://numerics.mathdotnet.com
// http://github.com/mathnet/mathnet-numerics
//
// Copyright (c) 2009-2014 Math.NET
//
// Permission is hereby granted, free of charge, to any person
// obtaining a copy of this software and associated documentation
// files (the "Software"), to deal in the Software without
// restriction, including without limitation the rights to use,
// copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following
// conditions:
//
// The above copyright notice and this permission notice shall be
// included in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
// OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
// HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
// WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
// OTHER DEALINGS IN THE SOFTWARE.
// </copyright>
using System;
using System.Collections.Generic;
using System.Linq;
namespace MathNet.Numerics.Interpolation
{
/// <summary>
/// Piece-wise Linear Interpolation.
/// </summary>
/// <remarks>Supports both differentiation and integration.</remarks>
public class LinearSpline : IInterpolation
{
readonly double[] _x;
readonly double[] _c0;
readonly double[] _c1;
readonly Lazy<double[]> _indefiniteIntegral;
/// <param name="x">Sample points (N+1), sorted ascending</param>
/// <param name="c0">Sample values (N or N+1) at the corresponding points; intercept, zero order coefficients</param>
/// <param name="c1">Slopes (N) at the sample points (first order coefficients): N</param>
public LinearSpline(double[] x, double[] c0, double[] c1)
{
if ((x.Length != c0.Length + 1 && x.Length != c0.Length) || x.Length != c1.Length + 1)
{
throw new ArgumentException("All vectors must have the same dimensionality.");
}
if (x.Length < 2)
{
throw new ArgumentException("The given array is too small. It must be at least 2 long.", nameof(x));
}
_x = x;
_c0 = c0;
_c1 = c1;
_indefiniteIntegral = new Lazy<double[]>(ComputeIndefiniteIntegral);
}
/// <summary>
/// Create a linear spline interpolation from a set of (x,y) value pairs, sorted ascendingly by x.
/// </summary>
public static LinearSpline InterpolateSorted(double[] x, double[] y)
{
if (x.Length != y.Length)
{
throw new ArgumentException("All vectors must have the same dimensionality.");
}
if (x.Length < 2)
{
throw new ArgumentException("The given array is too small. It must be at least 2 long.", nameof(x));
}
var c1 = new double[x.Length - 1];
for (int i = 0; i < c1.Length; i++)
{
c1[i] = (y[i + 1] - y[i])/(x[i + 1] - x[i]);
}
return new LinearSpline(x, y, c1);
}
/// <summary>
/// Create a linear spline interpolation from an unsorted set of (x,y) value pairs.
/// WARNING: Works in-place and can thus causes the data array to be reordered.
/// </summary>
public static LinearSpline InterpolateInplace(double[] x, double[] y)
{
if (x.Length != y.Length)
{
throw new ArgumentException("All vectors must have the same dimensionality.");
}
Sorting.Sort(x, y);
return InterpolateSorted(x, y);
}
/// <summary>
/// Create a linear spline interpolation from an unsorted set of (x,y) value pairs.
/// </summary>
public static LinearSpline Interpolate(IEnumerable<double> x, IEnumerable<double> y)
{
// note: we must make a copy, even if the input was arrays already
return InterpolateInplace(x.ToArray(), y.ToArray());
}
/// <summary>
/// Gets a value indicating whether the algorithm supports differentiation (interpolated derivative).
/// </summary>
bool IInterpolation.SupportsDifferentiation => true;
/// <summary>
/// Gets a value indicating whether the algorithm supports integration (interpolated quadrature).
/// </summary>
bool IInterpolation.SupportsIntegration => true;
/// <summary>
/// Interpolate at point t.
/// </summary>
/// <param name="t">Point t to interpolate at.</param>
/// <returns>Interpolated value x(t).</returns>
public double Interpolate(double t)
{
return Interpolate(t, double.MaxValue);
}
/// <summary>
/// Interpolate at point t.
/// </summary>
/// <param name="t">Point t to interpolate at.</param>
/// <param name="maxDeltaT">Maximum allowed delta between point 't' and reference points.</param>
/// <returns>Interpolated value x(t).</returns>
/// <exception cref="InterpolatingDistanceException">Thrown when distance from xn or xn+1 to 't' is exceeding <paramref name="maxDeltaT"/>.</exception>
public double Interpolate(double t, double maxDeltaT)
{
int k = LeftSegmentIndex(t);
if (Math.Abs(t - _x[k]) > maxDeltaT)
{
throw new InterpolatingDistanceException("Lower bound point exceeds maxDetlaT.");
}
else if (Math.Abs(_x[k + 1] - t) > maxDeltaT)
{
throw new InterpolatingDistanceException("Upper bound point exceeds maxDetlaT.");
}
return _c0[k] + (t - _x[k]) * _c1[k];
}
/// <summary>
/// Differentiate at point t.
/// </summary>
/// <param name="t">Point t to interpolate at.</param>
/// <returns>Interpolated first derivative at point t.</returns>
public double Differentiate(double t)
{
int k = LeftSegmentIndex(t);
return _c1[k];
}
/// <summary>
/// Differentiate twice at point t.
/// </summary>
/// <param name="t">Point t to interpolate at.</param>
/// <returns>Interpolated second derivative at point t.</returns>
public double Differentiate2(double t) => 0d;
/// <summary>
/// Indefinite integral at point t.
/// </summary>
/// <param name="t">Point t to integrate at.</param>
public double Integrate(double t)
{
int k = LeftSegmentIndex(t);
var x = t - _x[k];
return _indefiniteIntegral.Value[k] + x*(_c0[k] + x*_c1[k]/2);
}
/// <summary>
/// Definite integral between points a and b.
/// </summary>
/// <param name="a">Left bound of the integration interval [a,b].</param>
/// <param name="b">Right bound of the integration interval [a,b].</param>
public double Integrate(double a, double b) => Integrate(b) - Integrate(a);
double[] ComputeIndefiniteIntegral()
{
var integral = new double[_c1.Length];
for (int i = 0; i < integral.Length - 1; i++)
{
double w = _x[i + 1] - _x[i];
integral[i + 1] = integral[i] + w*(_c0[i] + w*_c1[i]/2);
}
return integral;
}
/// <summary>
/// Find the index of the greatest sample point smaller than t,
/// or the left index of the closest segment for extrapolation.
/// </summary>
int LeftSegmentIndex(double t)
{
int index = Array.BinarySearch(_x, t);
if (index < 0)
{
index = ~index - 1;
}
return Math.Min(Math.Max(index, 0), _x.Length - 2);
}
}
}