-
Notifications
You must be signed in to change notification settings - Fork 905
/
Copy pathNewtonMinimizer.cs
194 lines (172 loc) · 7.86 KB
/
NewtonMinimizer.cs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
// <copyright file="NewtonMinimizer.cs" company="Math.NET">
// Math.NET Numerics, part of the Math.NET Project
// http://numerics.mathdotnet.com
// http://github.com/mathnet/mathnet-numerics
//
// Copyright (c) 2009-2017 Math.NET
//
// Permission is hereby granted, free of charge, to any person
// obtaining a copy of this software and associated documentation
// files (the "Software"), to deal in the Software without
// restriction, including without limitation the rights to use,
// copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following
// conditions:
//
// The above copyright notice and this permission notice shall be
// included in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
// OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
// HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
// WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
// OTHER DEALINGS IN THE SOFTWARE.
// </copyright>
using System;
using MathNet.Numerics.LinearAlgebra;
using MathNet.Numerics.Optimization.LineSearch;
using MathNet.Numerics.LinearAlgebra.Factorization;
namespace MathNet.Numerics.Optimization
{
public sealed class NewtonMinimizer : IUnconstrainedMinimizer
{
public double GradientTolerance { get; set; }
public int MaximumIterations { get; set; }
public bool UseLineSearch { get; set; }
public HessianModifiers Modifier { get; set; }
public NewtonMinimizer(double gradientTolerance, int maximumIterations, bool useLineSearch = false, HessianModifiers modifier = HessianModifiers.None)
{
GradientTolerance = gradientTolerance;
MaximumIterations = maximumIterations;
UseLineSearch = useLineSearch;
Modifier = modifier;
}
public MinimizationResult FindMinimum(IObjectiveFunction objective, Vector<double> initialGuess)
{
return Minimum(objective, initialGuess, GradientTolerance, MaximumIterations, UseLineSearch, Modifier);
}
public static MinimizationResult Minimum(IObjectiveFunction objective, Vector<double> initialGuess, double gradientTolerance=1e-8, int maxIterations=1000, bool useLineSearch=false, HessianModifiers modifier=HessianModifiers.None)
{
if (!objective.IsGradientSupported)
{
throw new IncompatibleObjectiveException("Gradient not supported in objective function, but required for Newton minimization.");
}
if (!objective.IsHessianSupported)
{
throw new IncompatibleObjectiveException("Hessian not supported in objective function, but required for Newton minimization.");
}
// Check that we're not already done
objective.EvaluateAt(initialGuess);
ValidateGradient(objective);
if (objective.Gradient.Norm(2.0) < gradientTolerance)
{
return new MinimizationResult(objective, 0, ExitCondition.AbsoluteGradient);
}
// Set up line search algorithm
var lineSearcher = new WeakWolfeLineSearch(1e-4, 0.9, 1e-4, maxIterations: 1000);
// Subsequent steps
int iterations = 0;
int totalLineSearchSteps = 0;
int iterationsWithNontrivialLineSearch = 0;
bool tmpLineSearch = false;
while (objective.Gradient.Norm(2.0) >= gradientTolerance && iterations < maxIterations)
{
ValidateHessian(objective);
var searchDirection = CalculateSearchDirection(objective, modifier);
if (searchDirection * objective.Gradient >= 0)
{
searchDirection = -objective.Gradient;
tmpLineSearch = true;
}
if (useLineSearch || tmpLineSearch)
{
LineSearchResult result;
try
{
result = lineSearcher.FindConformingStep(objective, searchDirection, 1.0);
}
catch (Exception e)
{
throw new InnerOptimizationException("Line search failed.", e);
}
iterationsWithNontrivialLineSearch += result.Iterations > 0 ? 1 : 0;
totalLineSearchSteps += result.Iterations;
objective = result.FunctionInfoAtMinimum;
}
else
{
objective.EvaluateAt(objective.Point + searchDirection);
}
ValidateGradient(objective);
tmpLineSearch = false;
iterations += 1;
}
if (iterations == maxIterations)
{
throw new MaximumIterationsException(FormattableString.Invariant($"Maximum iterations ({maxIterations}) reached."));
}
return new MinimizationWithLineSearchResult(objective, iterations, ExitCondition.AbsoluteGradient, totalLineSearchSteps, iterationsWithNontrivialLineSearch);
}
static Vector<double> CalculateSearchDirection(IObjectiveFunction objective, HessianModifiers modifier)
{
Vector<double> searchDirection = null;
switch (modifier)
{
case HessianModifiers.None:
searchDirection = SolveLU(objective);
break;
case HessianModifiers.ReverseNegativeEigenvalues:
searchDirection = ReverseNegativeEigenvaluesAndSolve(objective);
break;
}
return searchDirection;
}
static Vector<double> SolveLU(IObjectiveFunction objective)
{
return objective.Hessian.LU().Solve(-objective.Gradient);
}
/// <summary>
/// Force the Hessian to be positive definite by reversing the negative eigenvalues. Use the EVD decomposition to then solve for the search direction.
/// Implementation based on Philip E. Gill, Walter Murray, and Margaret H. Wright, Practical Optimization, 1981, 107–8.
/// </summary>
/// <param name="objective"></param>
/// <returns></returns>
static Vector<double> ReverseNegativeEigenvaluesAndSolve(IObjectiveFunction objective)
{
Evd<double> evd = objective.Hessian.Evd(Symmetricity.Symmetric);
for (int i = 0; i < evd.EigenValues.Count; i++)
{
evd.EigenValues[i] = Math.Max(Math.Abs(evd.EigenValues[i].Real), double.Epsilon);
}
return evd.Solve(-objective.Gradient);
}
static void ValidateGradient(IObjectiveFunctionEvaluation eval)
{
foreach (var x in eval.Gradient)
{
if (double.IsNaN(x) || double.IsInfinity(x))
{
throw new EvaluationException("Non-finite gradient returned.", eval);
}
}
}
static void ValidateHessian(IObjectiveFunctionEvaluation eval)
{
var hessian = eval.Hessian;
for (int ii = 0; ii < hessian.RowCount; ++ii)
{
for (int jj = 0; jj < hessian.ColumnCount; ++jj)
{
if (double.IsNaN(hessian[ii, jj]) || double.IsInfinity(hessian[ii, jj]))
{
throw new EvaluationException("Non-finite Hessian returned.", eval);
}
}
}
}
}
}