-
Notifications
You must be signed in to change notification settings - Fork 905
/
Copy pathEvdTests.cs
288 lines (240 loc) · 10.6 KB
/
EvdTests.cs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
// <copyright file="EvdTests.cs" company="Math.NET">
// Math.NET Numerics, part of the Math.NET Project
// http://numerics.mathdotnet.com
// http://github.com/mathnet/mathnet-numerics
//
// Copyright (c) 2009-2016 Math.NET
//
// Permission is hereby granted, free of charge, to any person
// obtaining a copy of this software and associated documentation
// files (the "Software"), to deal in the Software without
// restriction, including without limitation the rights to use,
// copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following
// conditions:
//
// The above copyright notice and this permission notice shall be
// included in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
// OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
// HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
// WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
// OTHER DEALINGS IN THE SOFTWARE.
// </copyright>
using MathNet.Numerics.LinearAlgebra;
using MathNet.Numerics.LinearAlgebra.Complex32;
using NUnit.Framework;
namespace MathNet.Numerics.Tests.LinearAlgebraTests.Complex32.Factorization
{
using Numerics;
using Complex = System.Numerics.Complex;
/// <summary>
/// Eigenvalues factorization tests for a dense matrix.
/// </summary>
[TestFixture, Category("LAFactorization")]
public class EvdTests
{
[Test]
public void CanFactorizeIdentityMatrix([Values(1, 10, 100)] int order)
{
var matrix = Matrix<Complex32>.Build.DenseIdentity(order);
var factorEvd = matrix.Evd();
var eigenValues = factorEvd.EigenValues;
var eigenVectors = factorEvd.EigenVectors;
var d = factorEvd.D;
Assert.AreEqual(matrix.RowCount, eigenVectors.RowCount);
Assert.AreEqual(matrix.RowCount, eigenVectors.ColumnCount);
Assert.AreEqual(matrix.ColumnCount, d.RowCount);
Assert.AreEqual(matrix.ColumnCount, d.ColumnCount);
for (var i = 0; i < eigenValues.Count; i++)
{
Assert.AreEqual(Complex.One, eigenValues[i]);
}
}
[Test]
public void CanFactorizeRandomSquareMatrix([Values(1, 2, 5, 10, 50, 100)] int order)
{
var A = Matrix<Complex32>.Build.Random(order, order, 1);
var factorEvd = A.Evd();
var V = factorEvd.EigenVectors;
var λ = factorEvd.D;
Assert.AreEqual(order, V.RowCount);
Assert.AreEqual(order, V.ColumnCount);
Assert.AreEqual(order, λ.RowCount);
Assert.AreEqual(order, λ.ColumnCount);
// Verify A*V = λ*V
var Av = A * V;
var Lv = V * λ;
AssertHelpers.AlmostEqual(Av, Lv, 4);
}
[Test]
public void CanFactorizeRandomSymmetricMatrix([Values(1, 2, 5, 10, 50, 100)] int order)
{
var A = Matrix<Complex32>.Build.RandomPositiveDefinite(order, 1);
MatrixHelpers.ForceHermitian(A);
var factorEvd = A.Evd(Symmetricity.Hermitian);
var V = factorEvd.EigenVectors;
var λ = factorEvd.D;
Assert.AreEqual(order, V.RowCount);
Assert.AreEqual(order, V.ColumnCount);
Assert.AreEqual(order, λ.RowCount);
Assert.AreEqual(order, λ.ColumnCount);
// Verify A = V*λ*VT
var matrix = V*λ*V.ConjugateTranspose();
AssertHelpers.AlmostEqual(matrix, A, 3);
AssertHelpers.AlmostEqualRelative(matrix, A, 1);
}
[Test]
public void CanCheckRankSquare([Values(10, 50, 100)] int order)
{
var A = Matrix<Complex32>.Build.Random(order, order, 1);
Assert.AreEqual(A.Evd().Rank, order);
}
[Test]
public void CanCheckRankOfSquareSingular([Values(10, 50, 100)] int order)
{
var A = new DenseMatrix(order, order);
A[0, 0] = 1;
A[order - 1, order - 1] = 1;
for (var i = 1; i < order - 1; i++)
{
A[i, i - 1] = 1;
A[i, i + 1] = 1;
A[i - 1, i] = 1;
A[i + 1, i] = 1;
}
var factorEvd = A.Evd();
Assert.AreEqual(factorEvd.Determinant, Complex32.Zero);
Assert.AreEqual(factorEvd.Rank, order - 1);
}
[Test]
public void IdentityDeterminantIsOne([Values(1, 10, 100)] int order)
{
var matrixI = DenseMatrix.CreateIdentity(order);
var factorEvd = matrixI.Evd();
Assert.AreEqual(Complex32.One, factorEvd.Determinant);
}
/// <summary>
/// Can solve a system of linear equations for a random vector and symmetric matrix (Ax=b).
/// </summary>
/// <param name="order">Matrix order.</param>
[Test]
public void CanSolveForRandomVectorAndSymmetricMatrix([Values(1, 2, 5, 10, 50, 100)] int order)
{
var A = Matrix<Complex32>.Build.RandomPositiveDefinite(order, 1);
MatrixHelpers.ForceHermitian(A);
var ACopy = A.Clone();
var evd = A.Evd(Symmetricity.Hermitian);
var b = Vector<Complex32>.Build.Random(order, 2);
var bCopy = b.Clone();
var x = evd.Solve(b);
var bReconstruct = A * x;
// Check the reconstruction.
AssertHelpers.AlmostEqual(b, bReconstruct, 2);
// Make sure A/B didn't change.
AssertHelpers.AlmostEqual(ACopy, A, 14);
AssertHelpers.AlmostEqual(bCopy, b, 14);
}
/// <summary>
/// Can solve a system of linear equations for a random matrix and symmetric matrix (AX=B).
/// </summary>
/// <param name="order">Matrix order.</param>
[Test]
public void CanSolveForRandomMatrixAndSymmetricMatrix([Values(1, 2, 5, 10, 50, 100)] int order)
{
var A = Matrix<Complex32>.Build.RandomPositiveDefinite(order, 1);
MatrixHelpers.ForceHermitian(A);
var ACopy = A.Clone();
var evd = A.Evd(Symmetricity.Hermitian);
var B = Matrix<Complex32>.Build.Random(order, order, 2);
var BCopy = B.Clone();
var X = evd.Solve(B);
// The solution X row dimension is equal to the column dimension of A
Assert.AreEqual(A.ColumnCount, X.RowCount);
// The solution X has the same number of columns as B
Assert.AreEqual(B.ColumnCount, X.ColumnCount);
var BReconstruct = A * X;
// Check the reconstruction.
AssertHelpers.AlmostEqual(B, BReconstruct, 1);
// Make sure A/B didn't change.
AssertHelpers.AlmostEqual(ACopy, A, 14);
AssertHelpers.AlmostEqual(BCopy, B, 14);
}
/// <summary>
/// Can solve a system of linear equations for a random vector and symmetric matrix (Ax=b) into a result vector.
/// </summary>
/// <param name="order">Matrix order.</param>
[Test]
public void CanSolveForRandomVectorAndSymmetricMatrixWhenResultVectorGiven([Values(1, 2, 5, 10, 50, 100)] int order)
{
var A = Matrix<Complex32>.Build.RandomPositiveDefinite(order, 1);
MatrixHelpers.ForceHermitian(A);
var ACopy = A.Clone();
var evd = A.Evd(Symmetricity.Hermitian);
var b = Vector<Complex32>.Build.Random(order, 2);
var bCopy = b.Clone();
var x = new DenseVector(order);
evd.Solve(b, x);
var bReconstruct = A * x;
// Check the reconstruction.
AssertHelpers.AlmostEqual(b, bReconstruct, 2);
// Make sure A/B didn't change.
AssertHelpers.AlmostEqual(ACopy, A, 14);
AssertHelpers.AlmostEqual(bCopy, b, 14);
}
/// <summary>
/// Can solve a system of linear equations for a random matrix and symmetric matrix (AX=B) into result matrix.
/// </summary>
/// <param name="order">Matrix order.</param>
[Test]
public void CanSolveForRandomMatrixAndSymmetricMatrixWhenResultMatrixGiven([Values(1, 2, 5, 10, 50, 100)] int order)
{
var A = Matrix<Complex32>.Build.RandomPositiveDefinite(order, 1);
MatrixHelpers.ForceHermitian(A);
var ACopy = A.Clone();
var evd = A.Evd(Symmetricity.Hermitian);
var B = Matrix<Complex32>.Build.Random(order, order, 2);
var BCopy = B.Clone();
var X = new DenseMatrix(order, order);
evd.Solve(B, X);
// The solution X row dimension is equal to the column dimension of A
Assert.AreEqual(A.ColumnCount, X.RowCount);
// The solution X has the same number of columns as B
Assert.AreEqual(B.ColumnCount, X.ColumnCount);
var BReconstruct = A * X;
// Check the reconstruction.
AssertHelpers.AlmostEqual(B, BReconstruct, 1);
// Make sure A/B didn't change.
AssertHelpers.AlmostEqual(ACopy, A, 14);
AssertHelpers.AlmostEqual(BCopy, B, 14);
}
/// <summary>
/// See: https://github.com/mathnet/mathnet-numerics/issues/595
/// </summary>
[Test]
public void CanFactorizeMatrixWithZeroInternalNorm()
{
Complex32[,] data =
{
{new Complex32(0.0f, 0.0f), new Complex32(1.0f, 0.0f), new Complex32(0.0f, 0.0f), new Complex32(0.0f, 0.0f)},
{new Complex32(2.25f, 0.0f), new Complex32(0.0f, 0.0f), new Complex32(0.0f, 0.0f), new Complex32(0.0f, 0.0f)},
{new Complex32(0.0f, 0.0f), new Complex32(0.0f, 0.0f), new Complex32(0.0f, 0.0f), new Complex32(1.0f, 0.0f)},
{new Complex32(0.0f, 0.0f), new Complex32(0.0f, 0.0f), new Complex32(2.25f, 0.0f), new Complex32(0.0f, 0.0f)}
};
var A = Matrix<Complex32>.Build.DenseOfArray(data);
var factorEvd = A.Evd();
var V = factorEvd.EigenVectors;
var λ = factorEvd.D;
// Verify A*V = λ*V
var Av = A * V;
var Lv = V * λ;
AssertHelpers.AlmostEqual(Av, Lv, 4);
AssertHelpers.AlmostEqualRelative(Av, Lv, 8);
}
}
}