-
Notifications
You must be signed in to change notification settings - Fork 905
/
Copy pathPoisson.cs
498 lines (444 loc) · 19.8 KB
/
Poisson.cs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
// <copyright file="Poisson.cs" company="Math.NET">
// Math.NET Numerics, part of the Math.NET Project
// http://numerics.mathdotnet.com
// http://github.com/mathnet/mathnet-numerics
//
// Copyright (c) 2009-2014 Math.NET
//
// Permission is hereby granted, free of charge, to any person
// obtaining a copy of this software and associated documentation
// files (the "Software"), to deal in the Software without
// restriction, including without limitation the rights to use,
// copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following
// conditions:
//
// The above copyright notice and this permission notice shall be
// included in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
// OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
// HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
// WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
// OTHER DEALINGS IN THE SOFTWARE.
// </copyright>
using System;
using System.Collections.Generic;
using MathNet.Numerics.Random;
namespace MathNet.Numerics.Distributions
{
/// <summary>
/// Discrete Univariate Poisson distribution.
/// </summary>
/// <remarks>
/// <para>Distribution is described at <a href="http://en.wikipedia.org/wiki/Poisson_distribution"> Wikipedia - Poisson distribution</a>.</para>
/// <para>Knuth's method is used to generate Poisson distributed random variables.</para>
/// <para>f(x) = exp(-λ)*λ^x/x!;</para>
/// </remarks>
public class Poisson : IDiscreteDistribution
{
System.Random _random;
readonly double _lambda;
/// <summary>
/// Initializes a new instance of the <see cref="Poisson"/> class.
/// </summary>
/// <param name="lambda">The lambda (λ) parameter of the Poisson distribution. Range: λ > 0.</param>
/// <exception cref="System.ArgumentOutOfRangeException">If <paramref name="lambda"/> is equal or less then 0.0.</exception>
public Poisson(double lambda)
{
if (!IsValidParameterSet(lambda))
{
throw new ArgumentException("Invalid parametrization for the distribution.");
}
_random = SystemRandomSource.Default;
_lambda = lambda;
}
/// <summary>
/// Initializes a new instance of the <see cref="Poisson"/> class.
/// </summary>
/// <param name="lambda">The lambda (λ) parameter of the Poisson distribution. Range: λ > 0.</param>
/// <param name="randomSource">The random number generator which is used to draw random samples.</param>
/// <exception cref="System.ArgumentOutOfRangeException">If <paramref name="lambda"/> is equal or less then 0.0.</exception>
public Poisson(double lambda, System.Random randomSource)
{
if (!IsValidParameterSet(lambda))
{
throw new ArgumentException("Invalid parametrization for the distribution.");
}
_random = randomSource ?? SystemRandomSource.Default;
_lambda = lambda;
}
/// <summary>
/// Returns a <see cref="System.String"/> that represents this instance.
/// </summary>
/// <returns>
/// A <see cref="System.String"/> that represents this instance.
/// </returns>
public override string ToString()
{
return $"Poisson(λ = {_lambda})";
}
/// <summary>
/// Tests whether the provided values are valid parameters for this distribution.
/// </summary>
/// <param name="lambda">The lambda (λ) parameter of the Poisson distribution. Range: λ > 0.</param>
public static bool IsValidParameterSet(double lambda)
{
return lambda > 0.0;
}
/// <summary>
/// Gets the Poisson distribution parameter λ. Range: λ > 0.
/// </summary>
public double Lambda => _lambda;
/// <summary>
/// Gets the random number generator which is used to draw random samples.
/// </summary>
public System.Random RandomSource
{
get => _random;
set => _random = value ?? SystemRandomSource.Default;
}
/// <summary>
/// Gets the mean of the distribution.
/// </summary>
public double Mean => _lambda;
/// <summary>
/// Gets the variance of the distribution.
/// </summary>
public double Variance => _lambda;
/// <summary>
/// Gets the standard deviation of the distribution.
/// </summary>
public double StdDev => Math.Sqrt(_lambda);
/// <summary>
/// Gets the entropy of the distribution.
/// </summary>
/// <remarks>Approximation, see Wikipedia <a href="http://en.wikipedia.org/wiki/Poisson_distribution">Poisson distribution</a></remarks>
public double Entropy => (0.5*Math.Log(Constants.Pi2*Constants.E*_lambda)) - (1.0/(12.0*_lambda)) - (1.0/(24.0*_lambda*_lambda)) - (19.0/(360.0*_lambda*_lambda*_lambda));
/// <summary>
/// Gets the skewness of the distribution.
/// </summary>
public double Skewness => 1.0/Math.Sqrt(_lambda);
/// <summary>
/// Gets the smallest element in the domain of the distributions which can be represented by an integer.
/// </summary>
public int Minimum => 0;
/// <summary>
/// Gets the largest element in the domain of the distributions which can be represented by an integer.
/// </summary>
public int Maximum => int.MaxValue;
/// <summary>
/// Gets the mode of the distribution.
/// </summary>
public int Mode => (int)Math.Floor(_lambda);
/// <summary>
/// Gets the median of the distribution.
/// </summary>
/// <remarks>Approximation, see Wikipedia <a href="http://en.wikipedia.org/wiki/Poisson_distribution">Poisson distribution</a></remarks>
public double Median => Math.Floor(_lambda + (1.0/3.0) - (0.02/_lambda));
/// <summary>
/// Computes the probability mass (PMF) at k, i.e. P(X = k).
/// </summary>
/// <param name="k">The location in the domain where we want to evaluate the probability mass function.</param>
/// <returns>the probability mass at location <paramref name="k"/>.</returns>
public double Probability(int k)
{
return Math.Exp(-_lambda + (k*Math.Log(_lambda)) - SpecialFunctions.FactorialLn(k));
}
/// <summary>
/// Computes the log probability mass (lnPMF) at k, i.e. ln(P(X = k)).
/// </summary>
/// <param name="k">The location in the domain where we want to evaluate the log probability mass function.</param>
/// <returns>the log probability mass at location <paramref name="k"/>.</returns>
public double ProbabilityLn(int k)
{
return -_lambda + (k*Math.Log(_lambda)) - SpecialFunctions.FactorialLn(k);
}
/// <summary>
/// Computes the cumulative distribution (CDF) of the distribution at x, i.e. P(X ≤ x).
/// </summary>
/// <param name="x">The location at which to compute the cumulative distribution function.</param>
/// <returns>the cumulative distribution at location <paramref name="x"/>.</returns>
public double CumulativeDistribution(double x)
{
return 1.0 - SpecialFunctions.GammaLowerRegularized(x + 1, _lambda);
}
/// <summary>
/// Computes the probability mass (PMF) at k, i.e. P(X = k).
/// </summary>
/// <param name="k">The location in the domain where we want to evaluate the probability mass function.</param>
/// <param name="lambda">The lambda (λ) parameter of the Poisson distribution. Range: λ > 0.</param>
/// <returns>the probability mass at location <paramref name="k"/>.</returns>
public static double PMF(double lambda, int k)
{
if (!(lambda > 0.0))
{
throw new ArgumentException("Invalid parametrization for the distribution.");
}
return Math.Exp(-lambda + (k*Math.Log(lambda)) - SpecialFunctions.FactorialLn(k));
}
/// <summary>
/// Computes the log probability mass (lnPMF) at k, i.e. ln(P(X = k)).
/// </summary>
/// <param name="k">The location in the domain where we want to evaluate the log probability mass function.</param>
/// <param name="lambda">The lambda (λ) parameter of the Poisson distribution. Range: λ > 0.</param>
/// <returns>the log probability mass at location <paramref name="k"/>.</returns>
public static double PMFLn(double lambda, int k)
{
if (!(lambda > 0.0))
{
throw new ArgumentException("Invalid parametrization for the distribution.");
}
return -lambda + (k*Math.Log(lambda)) - SpecialFunctions.FactorialLn(k);
}
/// <summary>
/// Computes the cumulative distribution (CDF) of the distribution at x, i.e. P(X ≤ x).
/// </summary>
/// <param name="x">The location at which to compute the cumulative distribution function.</param>
/// <param name="lambda">The lambda (λ) parameter of the Poisson distribution. Range: λ > 0.</param>
/// <returns>the cumulative distribution at location <paramref name="x"/>.</returns>
/// <seealso cref="CumulativeDistribution"/>
public static double CDF(double lambda, double x)
{
if (!(lambda > 0.0))
{
throw new ArgumentException("Invalid parametrization for the distribution.");
}
return 1.0 - SpecialFunctions.GammaLowerRegularized(x + 1, lambda);
}
/// <summary>
/// Generates one sample from the Poisson distribution.
/// </summary>
/// <param name="rnd">The random source to use.</param>
/// <param name="lambda">The lambda (λ) parameter of the Poisson distribution. Range: λ > 0.</param>
/// <returns>A random sample from the Poisson distribution.</returns>
internal static int SampleUnchecked(System.Random rnd, double lambda)
{
return (lambda < 30.0) ? DoSampleShort(rnd, lambda) : DoSampleLarge(rnd, lambda);
}
internal static void SamplesUnchecked(System.Random rnd, int[] values, double lambda)
{
if (lambda < 30.0)
{
var limit = Math.Exp(-lambda);
for (int i = 0; i < values.Length; i++)
{
var count = 0;
for (var product = rnd.NextDouble(); product >= limit; product *= rnd.NextDouble())
{
count++;
}
values[i] = count;
}
}
else
{
var c = 0.767 - (3.36/lambda);
var beta = Math.PI/Math.Sqrt(3.0*lambda);
var alpha = beta*lambda;
var k = Math.Log(c) - lambda - Math.Log(beta);
for (int i = 0; i < values.Length; i++)
{
for (;;)
{
var u = rnd.NextDouble();
var x = (alpha - Math.Log((1.0 - u)/u))/beta;
var n = (int)Math.Floor(x + 0.5);
if (n < 0)
{
continue;
}
var v = rnd.NextDouble();
var y = alpha - (beta*x);
var temp = 1.0 + Math.Exp(y);
var lhs = y + Math.Log(v/(temp*temp));
var rhs = k + (n*Math.Log(lambda)) - SpecialFunctions.FactorialLn(n);
if (lhs <= rhs)
{
values[i] = n;
break;
}
}
}
}
}
internal static IEnumerable<int> SamplesUnchecked(System.Random rnd, double lambda)
{
if (lambda < 30.0)
{
while (true)
{
yield return DoSampleShort(rnd, lambda);
}
}
else
{
while (true)
{
yield return DoSampleLarge(rnd, lambda);
}
}
}
/// <summary>
/// Generates one sample from the Poisson distribution by Knuth's method.
/// </summary>
/// <param name="rnd">The random source to use.</param>
/// <param name="lambda">The lambda (λ) parameter of the Poisson distribution. Range: λ > 0.</param>
/// <returns>A random sample from the Poisson distribution.</returns>
static int DoSampleShort(System.Random rnd, double lambda)
{
var limit = Math.Exp(-lambda);
var count = 0;
for (var product = rnd.NextDouble(); product >= limit; product *= rnd.NextDouble())
{
count++;
}
return count;
}
/// <summary>
/// Generates one sample from the Poisson distribution by "Rejection method PA".
/// </summary>
/// <param name="rnd">The random source to use.</param>
/// <param name="lambda">The lambda (λ) parameter of the Poisson distribution. Range: λ > 0.</param>
/// <returns>A random sample from the Poisson distribution.</returns>
/// <remarks>"Rejection method PA" from "The Computer Generation of Poisson Random Variables" by A. C. Atkinson,
/// Journal of the Royal Statistical Society Series C (Applied Statistics) Vol. 28, No. 1. (1979)
/// The article is on pages 29-35. The algorithm given here is on page 32. </remarks>
static int DoSampleLarge(System.Random rnd, double lambda)
{
var c = 0.767 - (3.36/lambda);
var beta = Math.PI/Math.Sqrt(3.0*lambda);
var alpha = beta*lambda;
var k = Math.Log(c) - lambda - Math.Log(beta);
for (;;)
{
var u = rnd.NextDouble();
var x = (alpha - Math.Log((1.0 - u)/u))/beta;
var n = (int)Math.Floor(x + 0.5);
if (n < 0)
{
continue;
}
var v = rnd.NextDouble();
var y = alpha - (beta*x);
var temp = 1.0 + Math.Exp(y);
var lhs = y + Math.Log(v/(temp*temp));
var rhs = k + (n*Math.Log(lambda)) - SpecialFunctions.FactorialLn(n);
if (lhs <= rhs)
{
return n;
}
}
}
/// <summary>
/// Samples a Poisson distributed random variable.
/// </summary>
/// <returns>A sample from the Poisson distribution.</returns>
public int Sample()
{
return SampleUnchecked(_random, _lambda);
}
/// <summary>
/// Fills an array with samples generated from the distribution.
/// </summary>
public void Samples(int[] values)
{
SamplesUnchecked(_random, values, _lambda);
}
/// <summary>
/// Samples an array of Poisson distributed random variables.
/// </summary>
/// <returns>a sequence of successes in N trials.</returns>
public IEnumerable<int> Samples()
{
return SamplesUnchecked(_random, _lambda);
}
/// <summary>
/// Samples a Poisson distributed random variable.
/// </summary>
/// <param name="rnd">The random number generator to use.</param>
/// <param name="lambda">The lambda (λ) parameter of the Poisson distribution. Range: λ > 0.</param>
/// <returns>A sample from the Poisson distribution.</returns>
public static int Sample(System.Random rnd, double lambda)
{
if (!(lambda > 0.0))
{
throw new ArgumentException("Invalid parametrization for the distribution.");
}
return SampleUnchecked(rnd, lambda);
}
/// <summary>
/// Samples a sequence of Poisson distributed random variables.
/// </summary>
/// <param name="rnd">The random number generator to use.</param>
/// <param name="lambda">The lambda (λ) parameter of the Poisson distribution. Range: λ > 0.</param>
/// <returns>a sequence of samples from the distribution.</returns>
public static IEnumerable<int> Samples(System.Random rnd, double lambda)
{
if (!(lambda > 0.0))
{
throw new ArgumentException("Invalid parametrization for the distribution.");
}
return SamplesUnchecked(rnd, lambda);
}
/// <summary>
/// Fills an array with samples generated from the distribution.
/// </summary>
/// <param name="rnd">The random number generator to use.</param>
/// <param name="values">The array to fill with the samples.</param>
/// <param name="lambda">The lambda (λ) parameter of the Poisson distribution. Range: λ > 0.</param>
/// <returns>a sequence of samples from the distribution.</returns>
public static void Samples(System.Random rnd, int[] values, double lambda)
{
if (!(lambda > 0.0))
{
throw new ArgumentException("Invalid parametrization for the distribution.");
}
SamplesUnchecked(rnd, values, lambda);
}
/// <summary>
/// Samples a Poisson distributed random variable.
/// </summary>
/// <param name="lambda">The lambda (λ) parameter of the Poisson distribution. Range: λ > 0.</param>
/// <returns>A sample from the Poisson distribution.</returns>
public static int Sample(double lambda)
{
if (!(lambda > 0.0))
{
throw new ArgumentException("Invalid parametrization for the distribution.");
}
return SampleUnchecked(SystemRandomSource.Default, lambda);
}
/// <summary>
/// Samples a sequence of Poisson distributed random variables.
/// </summary>
/// <param name="lambda">The lambda (λ) parameter of the Poisson distribution. Range: λ > 0.</param>
/// <returns>a sequence of samples from the distribution.</returns>
public static IEnumerable<int> Samples(double lambda)
{
if (!(lambda > 0.0))
{
throw new ArgumentException("Invalid parametrization for the distribution.");
}
return SamplesUnchecked(SystemRandomSource.Default, lambda);
}
/// <summary>
/// Fills an array with samples generated from the distribution.
/// </summary>
/// <param name="values">The array to fill with the samples.</param>
/// <param name="lambda">The lambda (λ) parameter of the Poisson distribution. Range: λ > 0.</param>
/// <returns>a sequence of samples from the distribution.</returns>
public static void Samples(int[] values, double lambda)
{
if (!(lambda > 0.0))
{
throw new ArgumentException("Invalid parametrization for the distribution.");
}
SamplesUnchecked(SystemRandomSource.Default, values, lambda);
}
}
}