-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathaudio.c
274 lines (246 loc) · 9.06 KB
/
audio.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
/*
* Copyright (C) 2024 Mikhail Burakov. This file is part of receiver.
*
* receiver is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* receiver is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with receiver. If not, see <https://www.gnu.org/licenses/>.
*/
#include "audio.h"
#include <errno.h>
#include <pipewire/pipewire.h>
#include <spa/param/audio/raw-utils.h>
#include <spa/utils/result.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "atomic_queue.h"
#include "toolbox/utils.h"
struct AudioContext {
size_t sample_rate;
size_t audio_stride;
struct AtomicQueue queue;
struct pw_thread_loop* pw_thread_loop;
struct pw_stream* pw_stream;
size_t queue_samples_sum;
size_t queue_samples_count;
};
static bool LookupChannel(const char* name, uint32_t* value) {
struct {
const char* name;
enum spa_audio_channel value;
} static const kChannelMap[] = {
#define _(op) {.name = #op, .value = SPA_AUDIO_CHANNEL_##op}
_(FL), _(FR), _(FC), _(LFE), _(SL), _(SR), _(FLC),
_(FRC), _(RC), _(RL), _(RR), _(TC), _(TFL), _(TFC),
_(TFR), _(TRL), _(TRC), _(TRR), _(RLC), _(RRC), _(FLW),
_(FRW), _(LFE2), _(FLH), _(FCH), _(FRH), _(TFLC), _(TFRC),
_(TSL), _(TSR), _(LLFE), _(RLFE), _(BC), _(BLC), _(BRC),
#undef _
};
for (size_t i = 0; i < LENGTH(kChannelMap); i++) {
if (!strcmp(kChannelMap[i].name, name)) {
if (value) *value = kChannelMap[i].value;
return true;
}
}
return false;
}
static size_t ParseChannelMap(
const char* channel_map,
uint32_t channel_positions[SPA_AUDIO_MAX_CHANNELS]) {
char minibuf[5];
size_t channels_counter = 0;
for (size_t i = 0, j = 0;; i++) {
switch (channel_map[i]) {
case 0:
case ',':
minibuf[j] = 0;
if (channels_counter == SPA_AUDIO_MAX_CHANNELS ||
!LookupChannel(minibuf, &channel_positions[channels_counter++]))
return 0;
if (!channel_map[i]) return channels_counter;
j = 0;
break;
default:
if (j == 4) return 0;
minibuf[j++] = channel_map[i];
break;
}
}
}
static bool ParseAudioConfig(const char* audio_config,
struct spa_audio_info_raw* out_audio_info) {
int sample_rate = atoi(audio_config);
if (sample_rate != 44100 && sample_rate != 48000) {
LOG("Invalid sample rate requested");
return false;
}
const char* channel_map = strchr(audio_config, ':');
if (!channel_map) {
LOG("Invalid audio config requested");
return false;
}
channel_map++;
struct spa_audio_info_raw audio_info = {
.format = SPA_AUDIO_FORMAT_S16_LE,
.rate = (uint32_t)sample_rate,
};
audio_info.channels =
(uint32_t)ParseChannelMap(channel_map, audio_info.position);
if (!audio_info.channels) {
LOG("Invalid channel map requested");
return false;
}
*out_audio_info = audio_info;
return true;
}
static void OnStreamProcess(void* data) {
struct AudioContext* audio_context = data;
struct pw_buffer* pw_buffer =
pw_stream_dequeue_buffer(audio_context->pw_stream);
if (!pw_buffer) {
LOG("Failed to dequeue stream buffer");
return;
}
struct spa_data* spa_data = &pw_buffer->buffer->datas[0];
size_t requested = MIN(pw_buffer->requested,
spa_data->maxsize / audio_context->audio_stride) *
audio_context->audio_stride;
size_t available =
AtomicQueueRead(&audio_context->queue, spa_data->data, requested);
if (available < requested) {
// LOG("Audio queue underflow (%zu < %zu)!", available, requested);
memset((uint8_t*)spa_data->data + available, 0, requested - available);
}
spa_data->chunk->offset = 0;
spa_data->chunk->stride = (int32_t)audio_context->audio_stride;
spa_data->chunk->size = (uint32_t)requested;
pw_stream_queue_buffer(audio_context->pw_stream, pw_buffer);
return;
}
struct AudioContext* AudioContextCreate(size_t queue_size,
const char* audio_config) {
LOG("Audio config is \"%s\"", audio_config);
struct spa_audio_info_raw audio_info;
if (!ParseAudioConfig(audio_config, &audio_info)) {
LOG("Failed to parse audio config argument");
return NULL;
}
pw_init(0, NULL);
struct AudioContext* audio_context = malloc(sizeof(struct AudioContext));
if (!audio_context) {
LOG("Failed to allocate audio context (%s)", strerror(errno));
return NULL;
}
audio_context->sample_rate = audio_info.rate;
audio_context->audio_stride = audio_info.channels * sizeof(int16_t);
if (!AtomicQueueCreate(&audio_context->queue,
queue_size * audio_context->audio_stride)) {
LOG("Failed to create buffer queue (%s)", strerror(errno));
goto rollback_audio_context;
}
audio_context->pw_thread_loop = pw_thread_loop_new("audio-playback", NULL);
if (!audio_context->pw_thread_loop) {
LOG("Failed to create pipewire thread loop");
goto rollback_queue;
}
pw_thread_loop_lock(audio_context->pw_thread_loop);
int err = pw_thread_loop_start(audio_context->pw_thread_loop);
if (err) {
LOG("Failed to start pipewire thread loop (%s)", spa_strerror(err));
pw_thread_loop_unlock(audio_context->pw_thread_loop);
goto rollback_thread_loop;
}
struct pw_properties* pw_properties = pw_properties_new(
#define _(...) __VA_ARGS__
_(PW_KEY_MEDIA_TYPE, "Audio"), _(PW_KEY_MEDIA_CATEGORY, "Playback"),
_(PW_KEY_MEDIA_ROLE, "Game"), NULL
#undef _
);
if (!pw_properties) {
LOG("Failed to create pipewire properties");
pw_thread_loop_unlock(audio_context->pw_thread_loop);
goto rollback_thread_loop;
}
pw_properties_setf(pw_properties, PW_KEY_NODE_LATENCY, "128/%du",
audio_info.rate);
static const struct pw_stream_events kPwStreamEvents = {
.version = PW_VERSION_STREAM_EVENTS,
.process = OnStreamProcess,
};
audio_context->pw_stream = pw_stream_new_simple(
pw_thread_loop_get_loop(audio_context->pw_thread_loop), "audio-playback",
pw_properties, &kPwStreamEvents, audio_context);
if (!audio_context->pw_stream) {
LOG("Failed to create pipewire stream");
pw_thread_loop_unlock(audio_context->pw_thread_loop);
goto rollback_thread_loop;
}
uint8_t buffer[1024];
struct spa_pod_builder spa_pod_builder =
SPA_POD_BUILDER_INIT(buffer, sizeof(buffer));
const struct spa_pod* params[] = {spa_format_audio_raw_build(
&spa_pod_builder, SPA_PARAM_EnumFormat, &audio_info)};
static const enum pw_stream_flags kPwStreamFlags =
PW_STREAM_FLAG_AUTOCONNECT | PW_STREAM_FLAG_MAP_BUFFERS |
PW_STREAM_FLAG_RT_PROCESS;
if (pw_stream_connect(audio_context->pw_stream, PW_DIRECTION_OUTPUT,
PW_ID_ANY, kPwStreamFlags, params, LENGTH(params))) {
LOG("Failed to connect pipewire stream");
pw_stream_destroy(audio_context->pw_stream);
pw_thread_loop_unlock(audio_context->pw_thread_loop);
goto rollback_thread_loop;
}
audio_context->queue_samples_sum = 0;
audio_context->queue_samples_count = 0;
pw_thread_loop_unlock(audio_context->pw_thread_loop);
return audio_context;
rollback_thread_loop:
pw_thread_loop_destroy(audio_context->pw_thread_loop);
rollback_queue:
AtomicQueueDestroy(&audio_context->queue);
rollback_audio_context:
free(audio_context);
pw_deinit();
return NULL;
}
bool AudioContextDecode(struct AudioContext* audio_context, const void* buffer,
size_t size) {
if (AtomicQueueWrite(&audio_context->queue, buffer, size) < size)
LOG("Audio queue overflow!");
size_t queue_size =
atomic_load_explicit(&audio_context->queue.size, memory_order_relaxed);
audio_context->queue_samples_sum += queue_size / audio_context->audio_stride;
audio_context->queue_samples_count++;
return true;
}
uint64_t AudioContextGetLatency(struct AudioContext* audio_context) {
size_t queue_latency = 0;
if (audio_context->queue_samples_count) {
queue_latency =
audio_context->queue_samples_sum / audio_context->queue_samples_count;
audio_context->queue_samples_sum = 0;
audio_context->queue_samples_count = 0;
}
// TODO(mburakov): This number is extremely optimistic, i.e. Bluetooth delays
// are not accounted for. Is it anyhow possible to get this information?
return (128 + queue_latency) * 1000000 / audio_context->sample_rate;
}
void AudioContextDestroy(struct AudioContext* audio_context) {
pw_thread_loop_lock(audio_context->pw_thread_loop);
pw_stream_destroy(audio_context->pw_stream);
pw_thread_loop_unlock(audio_context->pw_thread_loop);
pw_thread_loop_destroy(audio_context->pw_thread_loop);
AtomicQueueDestroy(&audio_context->queue);
free(audio_context);
pw_deinit();
}