-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtilebased.m
201 lines (187 loc) · 5.83 KB
/
tilebased.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
% TILEBASED
% FAUCCAL supporting script. Called from
% RELPNT function for finding grid's
% principal directions based on
% color alternation between chessboard's
% tiles
wdpr=6; % Search window size e.g. for wdpr=6 then window=1/3 of image size
% Search window's center is the midpnt
poly(1,:)=[midpnt(1)-round(ims(1)/wdpr),midpnt(1)-round(ims(1)/wdpr),...
midpnt(1)+round(ims(1)/wdpr),midpnt(1)+round(ims(1)/wdpr)];
poly(2,:)=[midpnt(2)-round(ims(2)/wdpr),midpnt(2)+round(ims(2)/wdpr),...
midpnt(2)+round(ims(2)/wdpr),midpnt(2)-round(ims(2)/wdpr)];
clear wdpr
% Find Harris points inside search window
mtr=0;
for i=1:size(xc,2)
if inpolygon(xc(1,i),xc(2,i),poly(1,:),poly(2,:))
mtr=mtr+1;
xc2(:,mtr)=xc(:,i);
end
end
clear mtr poly
% Sort above points according to distance from image center
dfmip=zeros(size(xc2,2),1);
for i=1:size(xc2,2)
dfmip(i)=norm([midpnt(1)-xc2(1,i);midpnt(2)-xc2(2,i)]);
end
[dfmip,si]=sort(dfmip);
% clear dfmip
n1=0;
epan=1;
end_krit=0;
ang=[0 0];
seg=[0 0];
fline=cell(1,2);
ind=zeros(1,2);
mtr=1;
while (epan<=size(si,1)/2 && end_krit==0)
% Select point nearest to image center (if n1 doesn't change. See below)
n1=n1+1;
idip=si(n1);
cgpnt(1)=xc2(1,idip);
cgpnt(2)=xc2(2,idip);
% Sort above points according to distance from point nearest to center
dfm=zeros(size(xc2,2),1);
for i=1:size(xc2,2)
dfm(i)=norm([cgpnt(1)-xc2(1,i);cgpnt(2)-xc2(2,i)]);
end
[dfm,siloc]=sort(dfm);
tile_sz=median(dfm(1:6));
dkr=tile_sz/4;
in_dkr=floor(dkr)/2;
% Check pixels' values on both sides of a tile's
% segment. If there is great change of brightness then
% this segment corresponds to a principal direction
ang_met=1;
for i=1:6
segmid(i,1:2)=[(xc2(1,idip)+xc2(1,siloc(i+1)))/2,(xc2(2,idip)+xc2(2,siloc(i+1)))/2];
ind(mtr)=i;
fline{1,i}=[xc2(1,idip),xc2(1,siloc(i+1));
xc2(2,idip),xc2(2,siloc(i+1))];
dx=xc2(1,siloc(i+1))-xc2(1,idip);
dy=xc2(2,siloc(i+1))-xc2(2,idip);
r_b=segmid(i,1:2);
if abs(dx)>=abs(dy)
dir(1,i)=dy/dx;
divor=sqrt(1+dir(1,i)^2);
r_sup(1,:)=dkr*[dir(1,i)/divor,-divor];
r_sup(2,:)=dkr*[-dir(1,i)/divor,divor];
r_par(1,:)=r_b+r_sup(1,:);
r_par(2,:)=r_b+r_sup(2,:);
m=1;
for j=-in_dkr:in_dkr
coll(1,m)=im(round(r_par(1,2)+j*dir(1,i)/divor),round(r_par(1,1)+j*divor));
coll(2,m)=im(round(r_par(2,2)-j*dir(1,i)/divor),round(r_par(2,1)-j*divor));
m=m+1;
end
else
dir(2,i)=dx/dy;
divor=sqrt(1+dir(2,i)^2);
r_sup(1,:)=dkr*[divor,-dir(2,i)/divor];
r_sup(2,:)=dkr*[-divor,dir(2,i)/divor];
r_par(1,:)=r_b+r_sup(1,:);
r_par(2,:)=r_b+r_sup(2,:);
m=1;
for j=-in_dkr:in_dkr
coll(1,m)=im(round(r_par(1,2)+j/divor),round(r_par(1,1)+j*dir(2,i)/divor));
coll(2,m)=im(round(r_par(2,2)-j/divor),round(r_par(2,1)-j*dir(2,i)/divor));
m=m+1;
end
end
krit=abs(mean(coll(1,:))-mean(coll(2,:)));
if krit>2*contrast
mtr=mtr+1;
if dir(1,i)~=0
ang(ang_met)=atan(dir(1,i));
seg(ang_met)=norm([dx,dy]);
ang_met=ang_met+1;
else
ang(ang_met)=acot(dir(2,i));
seg(ang_met)=norm([dx,dy]);
ang_met=ang_met+1;
end
if ang(1)<0
while ang(1)<0
ang(1)=ang(1)+2*pi;
end
elseif ang(1)>2*pi
while ang(1)>2*pi
ang(1)=ang(1)-2*pi;
end
end
if ang(2)<0
while ang(2)<0
ang(2)=ang(2)+2*pi;
end
elseif ang(2)>2*pi
while ang(2)>2*pi
ang(2)=ang(2)-2*pi;
end
end
if (ang_met>2 && ((abs(ang(2)-ang(1))<pi/18 || abs(ang(2)-ang(1))>(35*pi)/18) || (abs(ang(2)-ang(1))<(19*pi)/18) && abs(ang(2)-ang(1))>(17*pi)/18))
ang_met=ang_met-1;
mtr=mtr-1;
else
% plot(segmid(i,1),segmid(i,2),'+c')
end
end
if ang_met>2
end_krit=1;
break
end
end
end
clear si n1
% Sets as direction X of Geodetic system as the direction of the above
% lines which tangant is less or equal to 1 according to the image
% coordinate system
if ((ang(1)>pi/4 && ang(1)<3*pi/4) ||...
(ang(1)>5*pi/4 && ang(1)<7*pi/4))
ang1=ang(2);
ang2=ang(1);
% Calculate segment lengths for each direction (see below)
f(1)=seg(2);
f(2)=f(1);
f(3)=seg(1);
f(4)=f(3);
sw00=0;
else
ang1=ang(1);
ang2=ang(2);
% Same as above
f(1)=seg(1);
f(2)=f(1);
f(3)=seg(2);
f(4)=f(3);
sw00=1;
end
% % Debug set 2 {Plot established principle directions}
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% figure(300+M)
% imshow(im)
% hold on
% plot(xc(1,:),xc(2,:),'yo')
% if sw00==0
% % Plot principal direction lines
% plot(fline{1,ind(2)}(1,:),fline{1,ind(2)}(2,:),'c','LineWidth',2)
% plot(fline{1,ind(1)}(1,:),fline{1,ind(1)}(2,:),'m','LineWidth',2)
% else
% % Same as above
% plot(fline{1,ind(1)}(1,:),fline{1,ind(1)}(2,:),'c','LineWidth',2)
% plot(fline{1,ind(2)}(1,:),fline{1,ind(2)}(2,:),'m','LineWidth',2)
% end
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Sets the segments lengths for each side on the principal directions
% for the central point
if (ang1>pi/2 && ang1<3*pi/2)
tmpf=f(2);
f(2)=f(1);
f(1)=tmpf;
end
if (ang2>0 && ang2<pi)
tmpf=f(4);
f(4)=f(3);
f(3)=tmpf;
end
clear tmpf fline fang anind bpnt xcn gnpnt