-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
76 lines (55 loc) · 3.01 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
from langchain.chat_models import ChatOpenAI
from langchain.chains import ConversationChain
from langchain.chains.conversation.memory import ConversationBufferWindowMemory,ConversationSummaryBufferMemory
from langchain.prompts import (
SystemMessagePromptTemplate,
HumanMessagePromptTemplate,
ChatPromptTemplate,
MessagesPlaceholder
)
import streamlit as st
from streamlit_chat import message
from utils import *
# st.subheader("Depf Chatbot with Langchain, ChatGPT, Pinecone, and Streamlit")
st.subheader("Le DepfChatBot Votre assistant virtuel")
st.subheader("La Direction des Etudes et des Prévisions Financières (DEPF)")
if 'responses' not in st.session_state:
st.session_state['responses'] = ["comment je peux vous aider?"]
if 'requests' not in st.session_state:
st.session_state['requests'] = []
llm = ChatOpenAI(model_name="gpt-3.5-turbo", openai_api_key=os.getenv('OPENAI_API_KEY'))
if 'buffer_memory' not in st.session_state:
st.session_state.buffer_memory=ConversationBufferWindowMemory(k=3,return_messages=True)
\
system_msg_template = SystemMessagePromptTemplate.from_template(template="""Je m'appelle DepfBot un assistant financier de La Direction des Etudes et des Prévisions Financières (DEPF)\
Répondez à la question le plus sincèrement possible en utilisant le contexte fourni,
et si la réponse n'est pas contenue dans le texte ci-dessous, dites 'peut être la question n'est pas assez claire !'\'""")
human_msg_template = HumanMessagePromptTemplate.from_template(template="{input}")
prompt_template = ChatPromptTemplate.from_messages([system_msg_template, MessagesPlaceholder(variable_name="history"), human_msg_template])
conversation = ConversationChain(memory=st.session_state.buffer_memory, prompt=prompt_template, llm=llm, verbose=True)
# container for chat history
response_container = st.container()
# container for text box
textcontainer = st.container()
with textcontainer:
query = st.text_input("Query: ", key="input")
if query:
with st.spinner("je type ..."):
conversation_string = get_conversation_string()
# st.code(conversation_string)
refined_query = query_refiner(conversation_string, query)
#st.subheader("Requête raffinée:")
#st.write(refined_query)
context = find_match(refined_query)
#st.subheader("Context:")
#st.write(context)
#print(context)
response = conversation.predict(input=f"Context:\n {context} \n\n Query:\n{query}")
st.session_state.requests.append(query)
st.session_state.responses.append(response)
with response_container:
if st.session_state['responses']:
for i in range(len(st.session_state['responses'])):
message(st.session_state['responses'][i],key=str(i))
if i < len(st.session_state['requests']):
message(st.session_state["requests"][i], is_user=True,key=str(i)+ '_user')