-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
39 lines (31 loc) · 1.51 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
from sentence_transformers import SentenceTransformer
import pinecone
import openai
import streamlit as st
import os
os.environ['OPENAI_API_KEY'] = st.secrets['OPENAI_API_KEY']
openai.api_key = os.getenv('OPENAI_API_KEY')
model = SentenceTransformer('all-MiniLM-L6-v2')
pinecone.init(api_key='509434ef-757b-41f1-ae2f-27827d2c0ff5', environment='us-west4-gcp-free')
index = pinecone.Index('langchain-chatbot')
def find_match(input):
input_em = model.encode(input).tolist()
result = index.query(input_em, top_k=2, includeMetadata=True)
return result['matches'][0]['metadata']['text']+"\n"+result['matches'][1]['metadata']['text']
def query_refiner(conversation, query):
response = openai.Completion.create(
model="text-davinci-003",
prompt=f"Compte tenu de la requête utilisateur et du journal de conversation suivants, formulez une question qui serait la plus pertinente pour fournir à l'utilisateur une réponse à partir d'une base de connaissances.\n\njournal de conversation: \n{conversation}\n\n requête: {query}\n\nune requête raffinée:",
temperature=0.7,
max_tokens=256,
top_p=1,
frequency_penalty=0,
presence_penalty=0
)
return response['choices'][0]['text']
def get_conversation_string():
conversation_string = ""
for i in range(len(st.session_state['responses'])-1):
conversation_string += "Human: "+st.session_state['requests'][i] + "\n"
conversation_string += "Bot: "+ st.session_state['responses'][i+1] + "\n"
return conversation_string