-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathkeras_train.py
executable file
·255 lines (224 loc) · 7.39 KB
/
keras_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
import numpy as np
import os
import sys
import librosa
from sklearn.metrics import accuracy_score, confusion_matrix
from sklearn.model_selection import train_test_split
from sklearn import svm
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import cross_val_score
from sklearn.ensemble import AdaBoostClassifier
from sklearn.neural_network import MLPClassifier
from sklearn.metrics import classification_report
from keras.layers import LSTM
from keras.layers import Bidirectional
from keras.layers import TimeDistributed
from keras.models import Sequential
from keras.applications.inception_v3 import InceptionV3
from keras.layers import Dense, Activation,Dropout, Flatten, Embedding, GlobalAveragePooling2D
import pickle
from xgboost import XGBClassifier
#Path to the folder consisting different Emotions folders
# path_data = sys.argv[1]
#
# mslen = 22050
#
# data = []
#
# max_fs = 0
# labels = []
#
# emotions = ['neutral','calm','happy','sad','angry','fearful','disgust','surprised']
# directories = os.listdir(path_data)
#
# print(directories)
'''
f2 = open('feature.pkl','rb')
feature_all = pickle.load(f2)
f3 = open('label.pkl','rb')
labels = pickle.load(f3)
from copy import deepcopy
y = deepcopy(labels)
for i in range(len(y)):
y[i] = int(y[i])
n_labels = len(y)
n_unique_labels = len(np.unique(y))
one_hot_encode = np.zeros((n_labels,n_unique_labels))
f = np.arange(n_labels)
for i in range(len(f)):
one_hot_encode[f[i],y[i]-1]=1
'''
#TODO
IMG_WIDTH = 256
IMG_HEIGHT = 256
N_LABELS = 7
from keras.preprocessing.image import ImageDataGenerator
train_datagen = ImageDataGenerator(rescale = 1./255,
shear_range = 0.2,
zoom_range = 0.2,
horizontal_flip = True, validation_split = 0.3)
train_generator = train_datagen.flow_from_directory(
directory=r"./data/train/",
target_size=(IMG_WIDTH, IMG_HEIGHT),
color_mode="rgb",
batch_size=32,
class_mode="categorical",
subset = 'training'
)
validation_generator = train_datagen.flow_from_directory(
directory=r"./data/train/",
target_size=(IMG_WIDTH, IMG_HEIGHT),
color_mode="rgb",
batch_size=32,
class_mode="categorical",
subset = 'validation'
)
#
# #X_train, X_test, y_train, y_test = train_test_split(feature_all, one_hot_encode, test_size = 0.3, random_state=20)
#
# ########################### MODEL 1 ###########################
# model = Sequential()
#
# model.add(Dense(IMG_WIDTH,input_dim =IMG_HEIGHT,init='normal',activation ='relu'))
#
# model.add(Dense(400,init='normal',activation ='relu'))
#
# model.add(Dropout(0.2))
#
# model.add(Dense(200,init='normal',activation ='relu'))
#
# model.add(Dropout(0.2))
#
# model.add(Dense(100,init='normal',activation ='relu'))
#
# model.add(Dropout(0.2))
#
# model.add(Dense(N_LABELS,init='normal',activation ='softmax'))
#
# model.compile(loss = 'categorical_crossentropy',optimizer='adadelta',metrics=['accuracy'])
#
# #model.fit(X_train,y_train,nb_epoch=200,batch_size = 5,verbose=1)
# model.fit_generator(train_generator,
# steps_per_epoch=15,
# epochs=50,
# validation_data=validation_generator,
# validation_steps=5)
#
# #model.evaluate(X_test,y_test)
# model.evaluate_generator(validation_generator,steps=5)
#
# mlp_model = model.to_json()
# with open('mlp_model_relu_adadelta.json','w') as j:
# j.write(mlp_model)
# model.save_weights("mlp_relu_adadelta_model.h5")
#
# y_pred_model1 = model.predict_generator(validation_generator,steps=5)
# y2 = np.argmax(y_pred_model1,axis=1)
# y_test2 = np.argmax(y_test , axis = 1)
#
# count = 0
# for i in range(y2.shape[0]):
# if y2[i] == y_test2[i]:
# count+=1
#
# print('Accuracy for model 1 : ' + str((count / y2.shape[0]) * 100))
#
# ########################### MODEL 2 ###########################
# model2 = Sequential()
#
# model2.add(Dense(X_train.shape[1],input_dim =X_train.shape[1],init='normal',activation ='relu'))
#
# model2.add(Dense(400,init='normal',activation ='tanh'))
#
# model2.add(Dropout(0.2))
#
# model2.add(Dense(200,init='normal',activation ='tanh'))
#
# model2.add(Dropout(0.2))
#
# model2.add(Dense(100,init='normal',activation ='sigmoid'))
#
# model2.add(Dropout(0.2))
#
# model2.add(Dense(y_train.shape[1],init='normal',activation ='softmax'))
#
# model2.compile(loss = 'categorical_crossentropy',optimizer='adadelta',metrics=['accuracy'])
#
# #model2.fit(X_train, y_train, nb_epoch=200, batch_size = 5, verbose=1)
# model2.fit_generator(train_generator,
# steps_per_epoch=15,
# epochs=50,
# validation_data=validation_generator,
# validation_steps=5)
#
# model2.evaluate_generator(test_generator,steps=5)
#
#
# mlp_model2 = model2.to_json()
# with open('mlp_model_tanh_adadelta.json','w') as j:
# j.write(mlp_model2)
# model2.save_weights("mlp_tanh_adadelta_model.h5")
#
# y_pred_model2 = model2.predict(X_test)
# y22 = np.argmax(y_pred_model2,axis=1)
# y_test22 = np.argmax(y_test , axis = 1)
#
# count = 0
# for i in range(y22.shape[0]):
# if y22[i] == y_test22[i]:
# count+=1
#
# print('Accuracy for model 2 : ' + str((count / y22.shape[0]) * 100))
#
# X_train2,X_test2,y_train2,y_test2 = train_test_split(feature_all, y, test_size = 0.3, random_state=20)
########################### MODEL 3 ###########################
model3 = XGBClassifier()
#TODO fit generator
model3.fit_generator(train_generator,
steps_per_epoch=15,
epochs=50,
validation_data=validation_generator,
validation_steps=5)
model3.evals_result()
#TODO
score = cross_val_score(model3, X_train2, y_train2, cv=5)
#TODO predict generator
y_pred3 = model3.predict_generator(validation_generator,steps=5)
count = 0
for i in range(y_pred3.shape[0]):
# if y_pred3[i] == y_test2[i]:
# count+=1
#TODO compare with actual label
if y_pred3[i] == validation_generator.next():
count+=1
print('Accuracy for model 3 : ' + str((count / y_pred3.shape[0]) * 100))
# ########################### MODEL 4 ###########################
# img_width = 256
# img_height = 256
# img_channel = 3
# model4 = InceptionV3(include_top=False, weights='imagenet', input_shape=(img_width,img_height,img_channel), pooling=None, classes=7)
# last = model4.output
# x = GlobalAveragePooling2D()(last)
# x = Dense(512, activation='relu')(x)
# preds = Dense(7, activation='softmax')(x)
# for layer in model4.layers:
# layer.trainable = False
########################### TESTING ###########################
test_file_path = sys.argv[2]
X,sr = librosa.load(test_file_path, sr = None)
stft = np.abs(librosa.stft(X))
############# EXTRACTING AUDIO FEATURES #############
mfccs = np.mean(librosa.feature.mfcc(y=X, sr=sr, n_mfcc=40),axis=1)
chroma = np.mean(librosa.feature.chroma_stft(S=stft, sr=sr).T,axis=0)
mel = np.mean(librosa.feature.melspectrogram(X, sr=sr).T,axis=0)
contrast = np.mean(librosa.feature.spectral_contrast(S=stft, sr=sr,fmin=0.5*sr* 2**(-6)).T,axis=0)
tonnetz = np.mean(librosa.feature.tonnetz(y=librosa.effects.harmonic(X),sr=sr*2).T,axis=0)
features = np.hstack([mfccs,chroma,mel,contrast,tonnetz])
feature_all = np.vstack([feature_all,features])
x_chunk = np.array(features)
x_chunk = x_chunk.reshape(1,np.shape(x_chunk)[0])
for i in [model3] :
#TODO predict generator
y_chunk_model1 = i.predict(x_chunk)
index = np.argmax(y_chunk_model1)
print('Emotion index',index)