forked from lrjconan/deep_parsimonious
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathrun_distill_model.py
261 lines (207 loc) · 9.85 KB
/
run_distill_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
"""run_distill_model.py
Usage:
run_distill_model.py <distilled_model_id> <cumbersome_model_id> <lambda> <temperature>
"""
import exp_config as cg
import math
import numpy as np
import os
import tensorflow as tf
import time
import nn_cell_lib as nn
import cPickle as pickle
from CIFAR_input import read_CIFAR10, read_CIFAR100
from CIFAR_models import (baseline_model, clustering_model, distilled_model,
hybrid_model)
from docopt import docopt
from mini_batch_iter import MiniBatchIterator
from run_train_model import update_cluster_centers
def main():
args = docopt(__doc__)
lambda_ = args['<lambda>']
temperature = args['<temperature>']
param = getattr(cg, args['<distilled_model_id>'])(
lambda_=float(lambda_), temperature=float(temperature))
if param['resume_training']:
param['exp_id'] = param['resume_exp_id']
else:
param['exp_id'] = args['<distilled_model_id>'] + '_l' \
+ lambda_.replace('.', '-') + '_t' + temperature \
+ '_' + time.strftime("%Y-%b-%d-%H-%M-%S")
param['save_folder'] = os.path.join(param['save_path'], param['exp_id'])
param_cumb = getattr(cg, args['<cumbersome_model_id>'])()
# read data from file
param['denom_const'] = 255.0
if param['dataset_name'] == 'CIFAR10':
input_data = read_CIFAR10(param['data_folder'])
else:
input_data = read_CIFAR100(param['data_folder'])
print 'Reading data done!'
if param['dataset_name'] != param_cumb['dataset_name']:
raise ValueError(
'Distilled model must use same dataset as source model')
if param['dataset_name'] not in ['CIFAR10', 'CIFAR100']:
raise ValueError('Unsupported dataset name!')
# save parameters
if not os.path.isdir(param['save_folder']):
os.mkdir(param['save_folder'])
with open(os.path.join(param['save_folder'], 'hyper_param.txt'), 'w') as f:
for key, value in param.iteritems():
f.write('{}: {}\n'.format(key, value))
if param['model_name'] in ['hybrid_spatial', 'hybrid_sample']:
param['num_layer_cnn'] = len(
[xx for xx in param['num_cluster_cnn'] if xx])
param['num_layer_mlp'] = len(
[xx for xx in param['num_cluster_mlp'] if xx])
param['num_cluster'] = param['num_cluster_cnn'] \
+ param['num_cluster_mlp']
num_layer_reg = param['num_layer_cnn'] + param['num_layer_mlp']
param['num_layer_reg'] = num_layer_reg
hist_label = [np.zeros(xx) if xx is not None else None for xx in
param[
'num_cluster']]
reg_val = np.zeros(num_layer_reg)
# build cumbersome model
if param_cumb['model_name'] == 'baseline':
cumb_model_ops = baseline_model(param_cumb)
elif param_cumb['model_name'] == 'parsimonious':
cumb_model_ops = clustering_model(param_cumb)
else:
raise ValueError('Unsupported cumbersome model')
cumb_op_names = ['logits']
cumb_ops = [cumb_model_ops[i] for i in cumb_op_names]
cumb_vars = tf.global_variables()
print 'Rebuilding cumbersome model done!'
# restore session of cumbersome model
config = tf.ConfigProto(allow_soft_placement=True)
sess = tf.Session(config=config)
saver_cumb = tf.train.Saver(var_list=cumb_vars)
saver_cumb.restore(sess, os.path.join(
param_cumb['test_folder'], param_cumb['test_model_name']))
print 'Restoring cumbersome model done!'
# build distilled model
if param['model_name'] == 'distilled':
with tf.variable_scope('dist') as dist_var_scope:
model_ops = distilled_model(param)
# initiate session for new distilled model
var_list = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES,
scope='dist')
sess.run(tf.variables_initializer(var_list))
elif param['model_name'] in ['hybrid_spatial', 'hybrid_sample']:
with tf.variable_scope('hybrid') as hybrid_var_scope:
model_ops = hybrid_model(param)
var_list = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES,
scope='hybrid')
sess.run(tf.variables_initializer(var_list))
saver = tf.train.Saver(var_list=var_list)
train_op_names = ['train_step', 'loss']
val_op_names = ['scaled_logits']
train_ops = [model_ops[i] for i in train_op_names]
val_ops = [model_ops[i] for i in val_op_names]
print 'Building new model done!\n'
num_train_img = input_data['train_img'].shape[0]
num_val_img = input_data['test_img'].shape[0]
epoch_iter = int(math.ceil(num_train_img / param['bat_size']))
max_val_iter = int(math.ceil(num_val_img / param['bat_size']))
train_iterator = MiniBatchIterator(
idx_start=0, bat_size=param['bat_size'], num_sample=num_train_img,
train_phase=True, is_permute=True)
val_iterator = MiniBatchIterator(
idx_start=0, bat_size=param['bat_size'], num_sample=num_val_img,
train_phase=False, is_permute=False)
train_iter_start = 0
for train_iter in xrange(train_iter_start, param['max_train_iter']):
# generate a batch
idx_train_bat = train_iterator.get_batch()
bat_imgs = (input_data['train_img'][idx_train_bat, :, :, :].astype(
np.float32) - input_data['mean_img']) / param['denom_const']
bat_labels = input_data['train_label'][idx_train_bat].astype(np.int32)
feed_data = {
cumb_model_ops['input_images']: bat_imgs,
cumb_model_ops['input_labels']: bat_labels
}
# get logits from cumbersome model
source_model_logits = sess.run(
cumb_model_ops['logits'], feed_dict=feed_data)
feed_data = {
model_ops['input_images']: bat_imgs,
model_ops['input_labels']: bat_labels,
model_ops['source_model_logits']: source_model_logits
}
# with tf.variable_scope(dist_var_scope):
if param['model_name'] == 'distilled':
results = sess.run(train_ops, feed_dict=feed_data)
train_results = {}
for res, name in zip(results, train_op_names):
train_results[name] = res
loss = train_results['loss']
elif param['model_name'] in ['hybrid_spatial', 'hybrid_sample']:
feed_data[model_ops['input_eta']] = param['eta']
# deal with drifted clusters
if (train_iter + 1) % epoch_iter == 0:
update_cluster_centers(
sess, input_data, model_ops, hist_label, train_iterator,
param)
# get CE/Reg values
results = sess.run([model_ops['loss']] + model_ops['reg_ops'] +
model_ops['cluster_label'], feed_dict=feed_data)
loss = results[0]
for ii in xrange(num_layer_reg):
reg_val[ii] = results[1 + ii]
cluster_label = results[1 + num_layer_reg:]
cluster_idx = 0
for ii, xx in enumerate(param['num_cluster']):
if xx:
tmp_label = cluster_label[cluster_idx]
for jj in xrange(tmp_label.shape[0]):
hist_label[ii][tmp_label[jj]] += 1
cluster_idx += 1
# run clustering
if (train_iter + 1) % 1 == 0:
for iter_clustering in xrange(param['clustering_iter']):
sess.run(model_ops['clustering_ops'], feed_dict=feed_data)
if (train_iter + 1) % epoch_iter == 0:
for ii in xrange(len(hist_label)):
if hist_label[ii] is not None:
hist_label[ii].fill(0)
# run optimization
sess.run(model_ops['train_step'], feed_dict=feed_data)
# display statistic
if (train_iter + 1) % param['disp_iter'] == 0 or train_iter == 0:
disp_str = 'Train Step = {:06d} || CE loss = {:e}'.format(
train_iter + 1, loss)
if param['model_name'] in ['hybrid_spatial', 'hybrid_sample']:
disp_str += ' || Clustering '
for ii in xrange(num_layer_reg):
disp_str += 'Reg_{:d} = {:e} '.format(ii + 1, reg_val[ii])
print disp_str
# valid model
if (train_iter + 1) % param['valid_iter'] == 0 or train_iter == 0:
num_correct = 0.0
if param['resume_training'] == True:
print 'Resume Exp ID = {}'.format(param['exp_id'])
else:
print 'Exp ID = {}'.format(param['exp_id'])
for val_iter in xrange(max_val_iter):
idx_val_bat = val_iterator.get_batch()
bat_imgs = (input_data['test_img'][idx_val_bat, :, :, :].astype(
np.float32) - input_data['mean_img']) / param['denom_const']
bat_labels = input_data['test_label'][
idx_val_bat].astype(np.int32)
feed_data[model_ops['input_images']] = bat_imgs
feed_data[model_ops['input_labels']] = bat_labels
results = sess.run(val_ops, feed_dict=feed_data)
val_results = {}
for res, name in zip(results, val_op_names):
val_results[name] = res
pred_label = np.argmax(val_results['scaled_logits'], axis=1)
num_correct += np.sum(np.equal(pred_label,
bat_labels).astype(np.float32))
val_acc = (num_correct / num_val_img)
print "Val accuracy = {:3f}".format(val_acc * 100)
# snapshot a model
if (train_iter + 1) % param['save_iter'] == 0:
saver.save(sess, os.path.join(param['save_folder'], '{}_snapshot_{:07d}.ckpt'.format(
param['model_name'], train_iter + 1)))
if __name__ == '__main__':
main()