-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPINNacle_utils.py
49 lines (40 loc) · 1.61 KB
/
PINNacle_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
"""
Utility code taken (and slightly modified) from PINNacle to make our benchmark work
"""
import numpy as np
def trans_time_data_to_dataset(ref_data, datapath, input_dim, output_dim):
data = ref_data
slice = (data.shape[1] - input_dim + 1) // output_dim
assert (
slice * output_dim == data.shape[1] - input_dim + 1
), "Data shape is not multiple of pde.output_dim"
with open(datapath, "r") as f:
def extract_time(string):
index = string.find("t=")
if index == -1:
return None
return float(string[index + 2 :].split(" ")[0])
t = None
for line in f.readlines():
if line.startswith("%") and line.count("@") == slice * output_dim:
t = line.split("@")[1:]
t = list(map(extract_time, t))
if t is None or None in t:
raise ValueError(
"Reference Data not in Comsol format or does not contain time info"
)
t = np.array(t[::output_dim])
t, x0 = np.meshgrid(t, data[:, 0])
list_x = [x0.reshape(-1)]
for i in range(1, input_dim - 1):
list_x.append(np.stack([data[:, i] for _ in range(slice)]).T.reshape(-1))
list_x.append(t.reshape(-1))
for i in range(output_dim):
list_x.append(data[:, input_dim - 1 + i :: output_dim].reshape(-1))
return np.stack(list_x).T
def compute_relative_errors(test_y, pred_y):
mse = ((test_y - pred_y) ** 2).mean()
mae = np.abs(test_y - pred_y).mean()
l1re = mae / np.abs(test_y).mean()
l2re = np.sqrt(mse) / np.sqrt(test_y**2).mean()
print(f"{l1re=}, {l2re=}")