-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_clmef_gray.py
263 lines (220 loc) · 11.9 KB
/
train_clmef_gray.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
# -*- coding: utf-8 -*-
from torch.utils.data.sampler import SubsetRandomSampler
from torch.optim.lr_scheduler import CosineAnnealingLR
import os
from tqdm import tqdm
from torch.utils.data import DataLoader
import torch.optim as optim
import torch.nn as nn
import torchvision
import numpy as np
from CLMEF_net_gray import CLMEFNet
from PerceptualLoss import LossNetwork
from torchvision import transforms
from dataloader_clif_gray import Fusionset
from matplotlib import pyplot as plt
from ssim import SSIM, TV_Loss
import torch
from torchvision.models import vgg16
import time
import argparse
import copy
from tensorboardX import SummaryWriter
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
NWORKERS = 8
parser = argparse.ArgumentParser()
parser.add_argument('--exp_name', type=str, default='clif_try', help='Name of the experiment')
parser.add_argument('--out_path', type=str, default='./experiments', help='log folder path')
parser.add_argument('--root', type=str, default='./COCO_color/train2017', help=' data path')
# parser.add_argument('--root', type=str, default= 'G:/pic/', help=' data path')
parser.add_argument('--save_path', type=str, default='./train_result_20mse_gray_1lr_0.01swap', help='model save path')
parser.add_argument('--model_type', type=str, default='CNN', help='model type')
parser.add_argument('--CR', type=bool, default=True, help='to choose a mini dataset')
parser.add_argument('--miniset', type=bool, default=True, help='to choose a mini dataset')
parser.add_argument('--minirate', type=float, default=0.3, help='to detemine the size of a mini dataset')
parser.add_argument('--seed', type=int, default=3, help='random seed (default: 1)')
parser.add_argument('--gpus', type=lambda s: [int(item.strip()) for item in s.split(',')], default='0',
help='comma delimited of gpu ids to use. Use "-1" for cpu usage')
parser.add_argument('--samplelist', type=str, default='./extreme_MEF_pool_gray_1/', help='model samplelist')
parser.add_argument('--perloss', type=bool, default=True, help='using perloss')
parser.add_argument('--ssimloss', type=bool, default=True, help='using perloss')
parser.add_argument('--tvloss', type=bool, default=True, help='using perloss')
parser.add_argument('--w_crloss', type=float, default=0.04, help='using perloss')
parser.add_argument('--w_mseloss', type=float, default=1, help='using perloss')
parser.add_argument('--w_l1loss', type=float, default=1, help='using perloss')
parser.add_argument('--w_ssimloss', type=float, default=0, help='using perloss')
parser.add_argument('--w_tvloss', type=float, default=0, help='using perloss')
parser.add_argument('--epoch', type=int, default=35, help='training epoch')
parser.add_argument('--batch_size', type=int, default=28, help='batchsize')
parser.add_argument('--optimizer', type=str, default='ADAM', choices=['ADAM', 'SGD'])
parser.add_argument('--lr', type=float, default=1e-4, help='learning rate')
parser.add_argument('--momentum', type=float, default=0.9, help='SGD momentum')
parser.add_argument('--wd', type=float, default=5e-5, help='weight decay')
parser.add_argument('--dropout', type=float, default=0.5, help='dropout rate')
parser.add_argument('--summary_name', type=str, default='clif_try_', help='Name of the summmary')
args = parser.parse_args()
writer = SummaryWriter(comment=args.summary_name)
# ==================
# init
# ==================
# io = log.IOStream(args)
print(str(args))
toPIL = transforms.ToPILImage()
np.random.seed(1) # to get the same images leave it fixed
torch.manual_seed(args.seed)
args.cuda = (args.gpus[0] >= 0) and torch.cuda.is_available()
device = torch.device("cuda:" + str(args.gpus[0]) if args.cuda else "cpu")
if args.cuda:
print('Using GPUs ' + str(args.gpus) + ',' + ' from ' +
str(torch.cuda.device_count()) + ' devices available')
torch.cuda.manual_seed_all(args.seed)
torch.backends.cudnn.enabled = False
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
else:
print('Using CPU')
# ==================
# Read Data
# ==================
def mkdir(path):
if os.path.exists(path) is False:
os.makedirs(path)
def train(model, train_loader, val_loader, optimizer, criterion, args):
# Training
loss_train = []
loss_val = []
mkdir(args.save_path)
for epoch in tqdm(range(args.epoch)):
all_loss = 0.
all_mse_loss = 0.
all_ssim_loss = 0.
all_tv_loss = 0.
all_cr_loss = 0.
all_l1_loss = 0.
model.train()
for index, image in enumerate(train_loader):
img_orig = image[0].to(device) # shape:[B,1,256,256]
img_trans = image[1].to(device) # shape:[B,1,256,256]
optimizer.zero_grad()
img_recon = model(img_trans.float())
image = toPIL(img_recon[0].squeeze(0).detach().cpu())
if index % 1000 == 0:
image.save(os.path.join(args.save_path, args.summary_name + '_epoch' + str(epoch) + '_' + str(
index) + '_coco_train.png'))
loss = criterion[0](img_recon, img_orig)
loss_mse = loss
if args.perloss:
loss_pl_positive = criterion[1](torch.cat((img_recon, img_recon, img_recon), 1),
torch.cat((img_orig, img_orig, img_orig), 1))
loss_pl_negative = criterion[1](torch.cat((img_recon, img_recon, img_recon), 1),
torch.cat((img_trans, img_trans, img_trans), 1))
loss_cr = loss_pl_positive / loss_pl_negative
loss_ssim = (1 - criterion[2](img_recon, img_orig))
loss_tv = criterion[3](img_recon, img_orig)
loss_l1 = criterion[4](img_recon, img_orig)
loss = args.w_mseloss * loss + args.w_crloss * loss_cr + args.w_ssimloss * loss_ssim \
+ args.w_tvloss * loss_tv + args.w_l1loss * loss_l1
loss.backward()
optimizer.step()
all_loss += loss
all_mse_loss += loss_mse
all_ssim_loss += loss_ssim
all_tv_loss += loss_tv
all_cr_loss += loss_cr
all_l1_loss += loss_l1
print('Epoch:[%d/%d]-----Train------ LOSS:%.4f' % (epoch, args.epoch, all_loss / (len(train_loader))))
writer.add_scalar('Train/loss', all_loss / (len(train_loader)), epoch)
writer.add_scalar('Train/mse_loss', all_mse_loss / (len(train_loader)), epoch)
writer.add_scalar('Train/ssim_loss', all_ssim_loss / (len(train_loader)), epoch)
writer.add_scalar('Train/tv_loss', all_tv_loss / (len(train_loader)), epoch)
writer.add_scalar('Train/cr_loss', all_cr_loss / (len(train_loader)), epoch)
writer.add_scalar('Train/l1_loss', all_l1_loss / (len(train_loader)), epoch)
loss_train.append(all_loss / (len(train_loader)))
scheduler.step()
model.eval()
with torch.no_grad():
all_loss = 0.
all_mse_loss = 0.
all_ssim_loss = 0.
all_tv_loss = 0.
all_cr_loss = 0.
all_l1_loss = 0.
for index, image in enumerate(val_loader):
img_orig = image[0].to(device)
img_trans = image[1].to(device)
img_recon = model(img_orig.float())
loss = criterion[0](img_recon, img_orig)
loss_mse = loss
if args.perloss:
loss_pl_positive = criterion[1](torch.cat((img_recon, img_recon, img_recon), 1),
torch.cat((img_orig, img_orig, img_orig), 1))
loss_pl_negative = criterion[1](torch.cat((img_recon, img_recon, img_recon), 1),
torch.cat((img_trans, img_trans, img_trans), 1))
loss_cr = loss_pl_positive / loss_pl_negative
loss_ssim = (1 - criterion[2](img_recon, img_orig))
loss_tv = criterion[3](img_recon, img_orig)
loss_l1 = criterion[4](img_recon, img_orig)
loss = args.w_mseloss * loss + args.w_crloss * loss_cr + args.w_ssimloss * loss_ssim \
+ args.w_tvloss * loss_tv + args.w_l1loss * loss_l1
all_loss += loss
all_mse_loss += loss_mse
all_ssim_loss += loss_ssim
all_tv_loss += loss_tv
all_cr_loss += loss_cr
all_l1_loss += loss_l1
print('Epoch:[%d/%d]---Validation--- LOSS:%.4f' % (epoch, args.epoch, all_loss / (len(val_loader))))
writer.add_scalar('Val/loss', all_loss / (len(val_loader)), epoch)
writer.add_scalar('Val/mse_loss', all_mse_loss / (len(val_loader)), epoch)
writer.add_scalar('Val/ssim_loss', all_ssim_loss / (len(val_loader)), epoch)
writer.add_scalar('Val/tv_loss', all_tv_loss / (len(val_loader)), epoch)
writer.add_scalar('Val/cr_loss', all_cr_loss / (len(val_loader)), epoch)
writer.add_scalar('Val/l1_loss', all_l1_loss / (len(val_loader)), epoch)
loss_val.append(all_loss / (len(val_loader)))
# save model every epoch
state = {
'epoch': epoch,
'model': model.state_dict(),
}
torch.save(state, os.path.join(args.save_path, args.summary_name + str(epoch) + '.pth'))
### save best model###
minloss_index = loss_val.index(min(loss_val))
print("The min loss in validation is obtained in %d epoch" % (minloss_index))
print("The training process has finished! Take a break! ")
if __name__ == "__main__":
train_augmentation = torchvision.transforms.Compose([torchvision.transforms.Resize(256),
torchvision.transforms.RandomCrop(256),
torchvision.transforms.RandomHorizontalFlip()])
dataset = Fusionset(args, args.root, transform=train_augmentation, gray=True, partition='train', CR=args.CR)
# Creating data indices for training and validation splits:
train_indices = dataset.train_ind
val_indices = dataset.val_ind
# Creating PT data samplers and loaders:
train_sampler = SubsetRandomSampler(train_indices) # sampler will assign the whole data accordinig to batchsize.
valid_sampler = SubsetRandomSampler(val_indices)
train_loader = DataLoader(dataset, num_workers=NWORKERS, batch_size=args.batch_size,
sampler=train_sampler, drop_last=True) # len(train_loader)*batchsize = len(train_sampler)
val_loader = DataLoader(dataset, num_workers=NWORKERS, batch_size=args.batch_size,
sampler=valid_sampler)
model = CLMEFNet().to(device)
criterion = []
criterion.append(nn.MSELoss().to(device))
if args.perloss:
vgg_model = vgg16(pretrained=True).features[:16]
vgg_model = vgg_model.to(device)
for param in vgg_model.parameters():
param.requires_grad = False
criterion.append(LossNetwork(vgg_model).to(device))
if args.ssimloss:
criterion.append(SSIM().to(device))
if args.tvloss:
criterion.append(TV_Loss().to(device))
criterion.append(nn.L1Loss().to(device))
optimizer = optim.Adam(params=filter(lambda x: x.requires_grad, model.parameters()), lr=args.lr, betas=(0.9, 0.999),
eps=1e-08)
scheduler = CosineAnnealingLR(optimizer, args.epoch)
optimizer.zero_grad()
# Handle multi-gpu
if (device.type == 'cuda') and len(args.gpus) > 1:
model = nn.DataParallel(model, args.gpus)
print('============ Training Begins ===============')
train(model, train_loader, val_loader, optimizer, criterion, args)