-
Notifications
You must be signed in to change notification settings - Fork 178
Closed
Labels
questionFurther information is requestedFurther information is requested
Description
System Info
Running infinity via docker (michaelf34/infinity:latest) + using the REST API to call the model
Information
- Docker
- The CLI directly via pip
Tasks
- An officially supported command
- My own modifications
Reproduction
import requests
url = "http://0.0.0.0:2230/classify"
model = "/path/to/model"
payload = {"model": model, "input": ["Munich is in Germany", "The sky is blue"]}
output = requests.post(url, json=payload)
print(output.json())Which gives me:
{'error': {'message': "ModelNotDeployedError: model=`/path/to/model` does not support `classify`. Reason: the loaded moded cannot fullyfill `classify`.options are {'rerank'}.", 'type': None, 'param': None, 'code': 400}}
The model's config looks like:
{
"_name_or_path": "microsoft/deberta-v2-xlarge",
"architectures": [
"DebertaV2ForSequenceClassification"
],
"attention_head_size": 64,
"attention_probs_dropout_prob": 0.1,
"conv_act": "gelu",
"conv_kernel_size": 3,
"hidden_act": "gelu",
"hidden_dropout_prob": 0.1,
"hidden_size": 1536,
"id2label": {
"0": "LABEL_0"
},
"initializer_range": 0.02,
"intermediate_size": 6144,
"label2id": {
"LABEL_0": 0
},
"layer_norm_eps": 1e-07,
"max_position_embeddings": 512,
"max_relative_positions": -1,
"model_type": "deberta-v2",
"norm_rel_ebd": "layer_norm",
"num_attention_heads": 24,
"num_hidden_layers": 24,
"pad_token_id": 0,
"pooler_dropout": 0,
"pooler_hidden_act": "gelu",
"pooler_hidden_size": 1536,
"pos_att_type": [
"p2c",
"c2p"
],
"position_biased_input": false,
"position_buckets": 256,
"problem_type": "multi_label_classification",
"relative_attention": true,
"share_att_key": true,
"torch_dtype": "float32",
"transformers_version": "4.34.0",
"type_vocab_size": 0,
"vocab_size": 128100
}So it's specified that the model is for classification in the config.
Expected behavior
While the base deberta-v2 doesn't have a classification head, this checkpoint does and I finetuned it for classification.
So I was expecting the /classify endpoint to work in this case. Is there anything wrong with the config or is there a way to have Infinity run a deberta-v2 finetuned for sequence classification?
Metadata
Metadata
Assignees
Labels
questionFurther information is requestedFurther information is requested