Skip to content

Commit 746f2e5

Browse files
authored
Merge pull request #379 from microsoft/PyTorchWildlife_Dev_0.0.1.1.2
PyTorchWildlife 0.0.1.1.2
2 parents 92e1d5f + 35a11b2 commit 746f2e5

File tree

849 files changed

+3714
-14047
lines changed

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

849 files changed

+3714
-14047
lines changed

.gitignore

+11-61
Original file line numberDiff line numberDiff line change
@@ -1,61 +1,11 @@
1-
################################################################################
2-
# This .gitignore file was automatically created by Microsoft(R) Visual Studio.
3-
################################################################################
4-
5-
# Byte-compiled / optimized / DLL files
6-
__pycache__/
7-
*.py[cod]
8-
*$py.class
9-
10-
# C extensions
11-
*.so
12-
13-
# Jupyter Notebook
14-
.ipynb_checkpoints
15-
16-
# mypy
17-
.mypy_cache/
18-
.dmypy.json
19-
dmypy.json
20-
21-
# Apple directory
22-
*.DS_Store
23-
24-
# IDEs
25-
*.idea/
26-
*.project
27-
.spyderproject
28-
.spyproject
29-
.vscode
30-
31-
# Demo files
32-
demo/aadconfig.py
33-
demo/apiconfig.py
34-
demo/CameraTrapAssets
35-
demo/static/uploads
36-
demo/static/results
37-
.webassets-cache/
38-
39-
# CameraTrapJsonFileProcessingApp
40-
api/batch_processing/postprocessing/CameraTrapJsonFileProcessingApp/.vs/
41-
api/batch_processing/postprocessing/CameraTrapJsonFileProcessingApp/bin/
42-
api/batch_processing/postprocessing/CameraTrapJsonFileProcessingApp/obj/
43-
api/batch_processing/postprocessing/CameraTrapJsonFileProcessingApp/packages/
44-
45-
# TF and PyTorch model files
46-
*.pb
47-
*.pt
48-
49-
# batch processing API config files
50-
api_config*.py
51-
52-
# Other
53-
*.pth
54-
*.o
55-
debug.log
56-
*.swp
57-
58-
# Things created when building the sync API
59-
yolov5
60-
api/synchronous/api_core/animal_detection_api/detection
61-
1+
__pycache__
2+
*weights*
3+
*processed.*
4+
*output*
5+
*flagged*
6+
*temp*
7+
PytorchWildlife.egg-info/
8+
*dev*
9+
*test*
10+
*setup/*
11+
*dist/*

.readthedocs.yaml

+13
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,13 @@
1+
version: "2"
2+
3+
build:
4+
os: "ubuntu-22.04"
5+
tools:
6+
python: "3.8"
7+
8+
python:
9+
install:
10+
- requirements: docs/requirements.txt
11+
12+
sphinx:
13+
configuration: docs/conf.py

INSTALLATION.md

+65
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,65 @@
1+
# PyTorch Wildlife: A Collaborative Deep Learning Framework for Conservation
2+
3+
## Welcome to Version 0.0.1.1.2
4+
5+
The Pytorch-wildlife library allows users to directly load the MegadetectorV5 model weights for animal detection. We've fully refactored our codebase, prioritizing ease of use in model deployment and expansion. In addition to `MegadetectorV5`, `Pytorch-wildlife` also accommodates a range of classification weights, such as those derived from the Amazon Rainforest dataset and the Opossum classification dataset. Explore the codebase and functionalities of `Pytorch-wildlife` through our interactive `Gradio` web app and detailed Jupyter notebooks, designed to showcase the practical applications of our enhancements. You can find more information in our [documentation](https://cameratraps.readthedocs.io/en/latest/).
6+
7+
## Table of Contents
8+
1. [Prerequisites](#prerequisites)
9+
2. [Installation](#installation)
10+
3. [Running the Demo](#running-the-demo)
11+
4. [License](#license)
12+
13+
## Prerequisites
14+
15+
1. Python 3.8
16+
2. NVIDIA GPU (for CUDA support, although the demo can run on CPU)
17+
18+
If you have conda/mamba installed, you can create a new environment with the following command:
19+
```bash
20+
conda create -n pytorch-wildlife python=3.8 -y
21+
conda activate pytorch-wildlife
22+
```
23+
24+
## Installation
25+
### 1. Install through pip:
26+
```bash
27+
pip install PytorchWildlife
28+
```
29+
## Running the Demo
30+
Here is a brief example on how to perform detection and classification on a single image using `PyTorch-wildlife`:
31+
```python
32+
import torch
33+
from PytorchWildlife.models import detection as pw_detection
34+
from PytorchWildlife.models import classification as pw_classification
35+
img = torch.randn((3, 1280, 1280))
36+
# Detection
37+
detection_model = pw_detection.MegaDetectorV5()
38+
detection_result = detection_model.single_image_detection(img)
39+
#Classification
40+
classification_model = pw_classification.AI4GAmazonRainforest()
41+
classification_results = classification_model.single_image_classification(img)
42+
```
43+
44+
#### Version 0.0.1.1.2 does not currently have video detection support, you can use the Gradio app for single image and batch image detection \& classification.
45+
If you want to use our Gradio demo for a user-friendly interface. Please run the following code inside the current repo. You can also find Jupyter Notebooks with an image and video tutorial:
46+
```bash
47+
git clone -b PytorchWildlife_Dev --single-branch https://github.com/microsoft/CameraTraps.git
48+
cd CameraTraps
49+
cd demo
50+
# For the image demo
51+
python image_demo.py
52+
# For the video demo
53+
python video_demo.py
54+
# For the gradio app
55+
python demo_gradio.py
56+
```
57+
The `demo_gradio.py` will launch a Gradio interface where you can:
58+
- Perform Single Image Detection: Upload an image and set a confidence threshold to get detections.
59+
- Perform Batch Image Detection: Upload a zip file containing multiple images to get detections in a JSON format.
60+
- Perform Video Detection: Upload a video and get a processed video with detected animals (Not supported in version 0.0.1.1.2).
61+
62+
## License
63+
This project is licensed under the MIT License. Refer to the LICENSE file for more details.
64+
## Copyright
65+
Copyright (c) Microsoft Corporation. All rights reserved.

LICENSE

+17-17
Original file line numberDiff line numberDiff line change
@@ -1,21 +1,21 @@
1-
MIT License
1+
MIT License
22

3-
Copyright (c) Microsoft Corporation. All rights reserved.
3+
Copyright (c) [2023] [Microsoft]
44

5-
Permission is hereby granted, free of charge, to any person obtaining a copy
6-
of this software and associated documentation files (the "Software"), to deal
7-
in the Software without restriction, including without limitation the rights
8-
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9-
copies of the Software, and to permit persons to whom the Software is
10-
furnished to do so, subject to the following conditions:
5+
Permission is hereby granted, free of charge, to any person obtaining a copy
6+
of this software and associated documentation files (the "Software"), to deal
7+
in the Software without restriction, including without limitation the rights
8+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9+
copies of the Software, and to permit persons to whom the Software is
10+
furnished to do so, subject to the following conditions:
1111

12-
The above copyright notice and this permission notice shall be included in all
13-
copies or substantial portions of the Software.
12+
The above copyright notice and this permission notice shall be included in all
13+
copies or substantial portions of the Software.
1414

15-
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16-
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17-
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18-
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19-
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20-
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21-
SOFTWARE
15+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21+
SOFTWARE.

PytorchWildlife/__init__.py

+3
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,3 @@
1+
from .data import *
2+
from .models import *
3+
from .utils import *

PytorchWildlife/data/__init__.py

+2
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,2 @@
1+
from .datasets import *
2+
from .transforms import *

PytorchWildlife/data/datasets.py

+120
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,120 @@
1+
# Copyright (c) Microsoft Corporation. All rights reserved.
2+
# Licensed under the MIT License.
3+
4+
import os
5+
from PIL import Image
6+
import numpy as np
7+
import supervision as sv
8+
from torch.utils.data import Dataset
9+
10+
# Making the DetectionImageFolder class available for import from this module
11+
__all__ = [
12+
"DetectionImageFolder",
13+
]
14+
15+
16+
class DetectionImageFolder(Dataset):
17+
"""
18+
A PyTorch Dataset for loading images from a specified directory.
19+
Each item in the dataset is a tuple containing the image data,
20+
the image's path, and the original size of the image.
21+
"""
22+
23+
def __init__(self, image_dir, transform=None):
24+
"""
25+
Initializes the dataset.
26+
27+
Parameters:
28+
image_dir (str): Path to the directory containing the images.
29+
transform (callable, optional): Optional transform to be applied on the image.
30+
"""
31+
self.image_dir = image_dir
32+
# Listing and sorting all image files in the specified directory
33+
self.images = sorted(os.listdir(self.image_dir))
34+
self.transform = transform
35+
36+
def __getitem__(self, idx):
37+
"""
38+
Retrieves an image from the dataset.
39+
40+
Parameters:
41+
idx (int): Index of the image to retrieve.
42+
43+
Returns:
44+
tuple: Contains the image data, the image's path, and its original size.
45+
"""
46+
# Get image filename and path
47+
img = self.images[idx]
48+
img_path = os.path.join(self.image_dir, img)
49+
50+
# Load and convert image to RGB
51+
img = Image.open(img_path).convert("RGB")
52+
img = np.asarray(img)
53+
img_size_ori = img.shape
54+
55+
# Apply transformation if specified
56+
if self.transform:
57+
img = self.transform(img)
58+
59+
return img, img_path, np.array(img_size_ori)
60+
61+
def __len__(self):
62+
"""
63+
Returns the total number of images in the dataset.
64+
65+
Returns:
66+
int: Total number of images.
67+
"""
68+
return len(self.images)
69+
70+
71+
class DetectionCrops(Dataset):
72+
73+
def __init__(self, detection_results, transform=None, path_head=None, animal_cls_id=0):
74+
75+
self.detection_results = detection_results
76+
self.transform = transform
77+
self.path_head = path_head
78+
self.animal_cls_id = animal_cls_id # This determins which detection class id represents animals.
79+
self.img_ids = []
80+
self.xyxys = []
81+
82+
self.load_detection_results()
83+
84+
def load_detection_results(self):
85+
for det in self.detection_results:
86+
for xyxy, det_id in zip(det["detections"].xyxy, det["detections"].class_id):
87+
# Only run recognition on animal detections
88+
if det_id == self.animal_cls_id:
89+
self.img_ids.append(det["img_id"])
90+
self.xyxys.append(xyxy)
91+
92+
def __getitem__(self, idx):
93+
"""
94+
Retrieves an image from the dataset.
95+
96+
Parameters:
97+
idx (int): Index of the image to retrieve.
98+
99+
Returns:
100+
tuple: Contains the image data and the image's path.
101+
"""
102+
103+
# Get image path and corresponding bbox xyxy for cropping
104+
img_id = self.img_ids[idx]
105+
xyxy = self.xyxys[idx]
106+
107+
img_path = os.path.join(self.path_head, img_id) if self.path_head else img_id
108+
109+
# Load and crop image with supervision
110+
img = sv.crop_image(np.array(Image.open(img_path).convert("RGB")),
111+
xyxy=xyxy)
112+
113+
# Apply transformation if specified
114+
if self.transform:
115+
img = self.transform(Image.fromarray(img))
116+
117+
return img, img_path
118+
119+
def __len__(self):
120+
return len(self.img_ids)

0 commit comments

Comments
 (0)