-
Notifications
You must be signed in to change notification settings - Fork 123
Description
I have been trying to train a model for our case but having some issues with the training loop, and I am getting following error -
Traceback (most recent call last):
File "/workspace/KBLaM/experiments/train.py", line 963, in
main()
File "/workspace/KBLaM/experiments/train.py", line 948, in main
trainer.train(
File "/workspace/KBLaM/experiments/train.py", line 616, in train
kb_embedding = self.kbretriever.get_key_embeddings(
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/workspace/KBLaM/experiments/train.py", line 444, in get_key_embeddings
train_set_key, train_set_val = get_kb_embd(
^^^^^^^^^^^^
File "/workspace/KBLaM/src/kblam/utils/train_utils.py", line 98, in get_kb_embd
precomputed_base_embd=np.stack([key_embds[indices], value_embds[indices]]),
~~~~~~~~~^^^^^^^^^
IndexError: index 1213 is out of bounds for axis 0 with size 448
Now for context my kb size is 448 and my embeddings shapes are -
Key embeddings shape: (448, 1536)
Value embeddings shape: (448, 1536)
My flow is -
- Initialize the base llama model
- generate KB embeddings using - text-embedding-ada-002
- I have already generated Synthetic QA file so used that for training
- once I start the training loop, I get the error above -
%%bash
python experiments/train.py
--dataset_dir datasets
--train_dataset synthetic_data
--N 4434
--B 16
--total_steps 120
--gradient_accm_step 12
--encoder_spec OAI
--key_embd_src key
--use_cached_embd
--sep_query_head
--kb_token_layer_frequency 3
--llm_type llama3
--hf_model_spec meta-llama/Meta-Llama-3-8B-Instruct
--hf_token $HF_TOKEN
--model_save_dir output/
--max_seq_len 1536