Skip to content

Issue with Embedding shape #92

@pTidke

Description

@pTidke

I have been trying to train a model for our case but having some issues with the training loop, and I am getting following error -
Traceback (most recent call last):
File "/workspace/KBLaM/experiments/train.py", line 963, in
main()
File "/workspace/KBLaM/experiments/train.py", line 948, in main
trainer.train(
File "/workspace/KBLaM/experiments/train.py", line 616, in train
kb_embedding = self.kbretriever.get_key_embeddings(
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/workspace/KBLaM/experiments/train.py", line 444, in get_key_embeddings
train_set_key, train_set_val = get_kb_embd(
^^^^^^^^^^^^
File "/workspace/KBLaM/src/kblam/utils/train_utils.py", line 98, in get_kb_embd
precomputed_base_embd=np.stack([key_embds[indices], value_embds[indices]]),
~~~~~~~~~^^^^^^^^^
IndexError: index 1213 is out of bounds for axis 0 with size 448

Now for context my kb size is 448 and my embeddings shapes are -
Key embeddings shape: (448, 1536)
Value embeddings shape: (448, 1536)

My flow is -

  1. Initialize the base llama model
  2. generate KB embeddings using - text-embedding-ada-002
  3. I have already generated Synthetic QA file so used that for training
  4. once I start the training loop, I get the error above -
    %%bash
    python experiments/train.py
    --dataset_dir datasets
    --train_dataset synthetic_data
    --N 4434
    --B 16
    --total_steps 120
    --gradient_accm_step 12
    --encoder_spec OAI
    --key_embd_src key
    --use_cached_embd
    --sep_query_head
    --kb_token_layer_frequency 3
    --llm_type llama3
    --hf_model_spec meta-llama/Meta-Llama-3-8B-Instruct
    --hf_token $HF_TOKEN
    --model_save_dir output/
    --max_seq_len 1536

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions