Skip to content

Commit 3b89d34

Browse files
authored
[ci][tests] enable test_int32_max_sparse_contribs back (#7104)
Update test_engine.py
1 parent ea31bec commit 3b89d34

File tree

1 file changed

+19
-19
lines changed

1 file changed

+19
-19
lines changed

tests/python_package_test/test_engine.py

Lines changed: 19 additions & 19 deletions
Original file line numberDiff line numberDiff line change
@@ -2040,25 +2040,25 @@ def test_predict_contrib_int64():
20402040
assert preds.shape[1] == X_test.shape[1] + 1
20412041

20422042

2043-
# @pytest.mark.skipif(psutil.virtual_memory().available / 1024 / 1024 / 1024 < 3, reason="not enough RAM")
2044-
# def test_int32_max_sparse_contribs(rng):
2045-
# params = {"objective": "binary"}
2046-
# train_features = rng.uniform(size=(100, 1000))
2047-
# train_targets = [0] * 50 + [1] * 50
2048-
# lgb_train = lgb.Dataset(train_features, train_targets)
2049-
# gbm = lgb.train(params, lgb_train, num_boost_round=2)
2050-
# csr_input_shape = (3000000, 1000)
2051-
# test_features = csr_matrix(csr_input_shape)
2052-
# for i in range(0, csr_input_shape[0], csr_input_shape[0] // 6):
2053-
# for j in range(0, 1000, 100):
2054-
# test_features[i, j] = random.random()
2055-
# y_pred_csr = gbm.predict(test_features, pred_contrib=True)
2056-
# # Note there is an extra column added to the output for the expected value
2057-
# csr_output_shape = (csr_input_shape[0], csr_input_shape[1] + 1)
2058-
# assert y_pred_csr.shape == csr_output_shape
2059-
# y_pred_csc = gbm.predict(test_features.tocsc(), pred_contrib=True)
2060-
# # Note output CSC shape should be same as CSR output shape
2061-
# assert y_pred_csc.shape == csr_output_shape
2043+
@pytest.mark.skipif(psutil.virtual_memory().available / 1024 / 1024 / 1024 < 3, reason="not enough RAM")
2044+
def test_int32_max_sparse_contribs(rng):
2045+
params = {"objective": "binary"}
2046+
train_features = rng.uniform(size=(100, 1000))
2047+
train_targets = [0] * 50 + [1] * 50
2048+
lgb_train = lgb.Dataset(train_features, train_targets)
2049+
gbm = lgb.train(params, lgb_train, num_boost_round=2)
2050+
csr_input_shape = (3000000, 1000)
2051+
test_features = csr_matrix(csr_input_shape)
2052+
for i in range(0, csr_input_shape[0], csr_input_shape[0] // 6):
2053+
for j in range(0, 1000, 100):
2054+
test_features[i, j] = random.random()
2055+
y_pred_csr = gbm.predict(test_features, pred_contrib=True)
2056+
# Note there is an extra column added to the output for the expected value
2057+
csr_output_shape = (csr_input_shape[0], csr_input_shape[1] + 1)
2058+
assert y_pred_csr.shape == csr_output_shape
2059+
y_pred_csc = gbm.predict(test_features.tocsc(), pred_contrib=True)
2060+
# Note output CSC shape should be same as CSR output shape
2061+
assert y_pred_csc.shape == csr_output_shape
20622062

20632063

20642064
def test_sliced_data(rng):

0 commit comments

Comments
 (0)