diff --git a/binder-index.md b/binder-index.md index a851276f87f1..c152e37daffb 100644 --- a/binder-index.md +++ b/binder-index.md @@ -272,6 +272,14 @@ These are noted in the README.md files for each sample, along with complete inst
βββββ βββββββββββββββΒ»\n", + "q0_0: β€ H βββ βββββββββββββ ββββββββββββββββββββββββββ ββββββββββββ€ Rx(-2.7437) βΒ»\n", + " βββββ€ β β β βββββββββββββββΒ»\n", + "q0_1: β€ H βββΌβββββββββββββΌβββββββββββββ βββββββββββββΌββββββββββββββ ββββββββββββΒ»\n", + " βββββ€ βZZ(5.7307) β βZZ(5.7307) β β Β»\n", + "q0_2: β€ H βββ βββββββββββββΌβββββββββββββ βββββββββββββΌββββββββββββββΌββββββββββββΒ»\n", + " βββββ€ βZZ(5.7307) β βZZ(5.7307) Β»\n", + "q0_3: β€ H ββββββββββββββββ ββββββββββββββββββββββββββΌββββββββββββββ ββββββββββββΒ»\n", + " βββββ€ βZZ(5.7307) Β»\n", + "q0_4: β€ H ββββββββββββββββββββββββββββββββββββββββββ ββββββββββββββββββββββββββΒ»\n", + " βββββ€ Β»\n", + "q0_5: β€ H ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββΒ»\n", + " βββββ Β»\n", + "Β« Β»\n", + "Β«q0_0: βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ ββββββββββββΒ»\n", + "Β« βββββββββββββββ β Β»\n", + "Β«q0_1: ββ ββββββββββββ€ Rx(-2.7437) ββββββββββββββββββββββββββββββββΌββββββββββββΒ»\n", + "Β« β βββββββββββββββ βββββββββββββββ βZZ(1.3234) Β»\n", + "Β«q0_2: ββΌββββββββββββββ ββββββββββββββ ββββββββββββ€ Rx(-2.7437) ββββ ββββββββββββΒ»\n", + "Β« β β β ββββββββββββββββββββββββββββββΒ»\n", + "Β«q0_3: ββΌββββββββββββββΌββββββββββββββΌββββββββββββββ βββββββββββββ€ Rx(-2.7437) βΒ»\n", + "Β« β βZZ(5.7307) β β βββββββββββββββΒ»\n", + "Β«q0_4: ββΌββββββββββββββ ββββββββββββββΌββββββββββββββΌβββββββββββββββ ββββββββββββΒ»\n", + "Β« βZZ(5.7307) βZZ(5.7307) βZZ(5.7307) βZZ(5.7307) Β»\n", + "Β«q0_5: ββ ββββββββββββββββββββββββββββ ββββββββββββββ βββββββββββββββ ββββββββββββΒ»\n", + "Β« Β»\n", + "Β« ββββββββββββββββ Β»\n", + "Β«q0_0: βββ βββββββββββββββββββββββββββ ββββββββββββ€ Rx(-0.48711) ββββββββββββββΒ»\n", + "Β« β β ββββββββββββββββ Β»\n", + "Β«q0_1: βββΌββββββββββββββ βββββββββββββΌββββββββββββββ βββββββββββββββ βββββββββββΒ»\n", + "Β« β βZZ(1.3234) β β β Β»\n", + "Β«q0_2: βββΌββββββββββββββ βββββββββββββΌββββββββββββββΌβββββββββββββββΌβββββββββββΒ»\n", + "Β« βZZ(1.3234) β βZZ(1.3234) β Β»\n", + "Β«q0_3: βββ βββββββββββββββββββββββββββΌββββββββββββββ βββββββββββββββΌβββββββββββΒ»\n", + "Β« βββββββββββββββ βZZ(1.3234) β Β»\n", + "Β«q0_4: β€ Rx(-2.7437) ββββββββββββββββ βββββββββββββββββββββββββββββΌβββββββββββΒ»\n", + "Β« βββββββββββββββ€ βZZ(1.3234) Β»\n", + "Β«q0_5: β€ Rx(-2.7437) βββββββββββββββββββββββββββββββββββββββββββββ βββββββββββΒ»\n", + "Β« βββββββββββββββ Β»\n", + "Β« Β»\n", + "Β«q0_0: βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββΒ»\n", + "Β« ββββββββββββββββ Β»\n", + "Β«q0_1: β€ Rx(-0.48711) ββββββββββββββββββββββββββββββββββββββββββββββΒ»\n", + "Β« ββββββββββββββββ ββββββββββββββββ Β»\n", + "Β«q0_2: βββ βββββββββββββββ ββββββββββββ€ Rx(-0.48711) βββββββββββββββββΒ»\n", + "Β« β β ββββββββββββββββββββββββββββββββΒ»\n", + "Β«q0_3: βββΌβββββββββββββββΌββββββββββββββ ββββββββββββββ€ Rx(-0.48711) βΒ»\n", + "Β« βZZ(1.3234) β β ββββββββββββββββΒ»\n", + "Β«q0_4: βββ βββββββββββββββΌββββββββββββββΌββββββββββββββββ βββββββββββββΒ»\n", + "Β« βZZ(1.3234) βZZ(1.3234) βZZ(1.3234) Β»\n", + "Β«q0_5: ββββββββββββββββββ ββββββββββββββ ββββββββββββββββ βββββββββββββΒ»\n", + "Β« Β»\n", + "Β« \n", + "Β«q0_0: ββββββββββββββββ\n", + "Β« \n", + "Β«q0_1: ββββββββββββββββ\n", + "Β« \n", + "Β«q0_2: ββββββββββββββββ\n", + "Β« \n", + "Β«q0_3: ββββββββββββββββ\n", + "Β« ββββββββββββββββ\n", + "Β«q0_4: β€ Rx(-0.48711) β\n", + "Β« ββββββββββββββββ€\n", + "Β«q0_5: β€ Rx(-0.48711) β\n", + "Β« ββββββββββββββββ" + ], + "text/plain": [ + " βββββ βββββββββββββββΒ»\n", + "q0_0: β€ H βββ βββββββββββββ ββββββββββββββββββββββββββ ββββββββββββ€ Rx(-2.7437) βΒ»\n", + " βββββ€ β β β βββββββββββββββΒ»\n", + "q0_1: β€ H βββΌβββββββββββββΌβββββββββββββ βββββββββββββΌββββββββββββββ ββββββββββββΒ»\n", + " βββββ€ βZZ(5.7307) β βZZ(5.7307) β β Β»\n", + "q0_2: β€ H βββ βββββββββββββΌβββββββββββββ βββββββββββββΌββββββββββββββΌββββββββββββΒ»\n", + " βββββ€ βZZ(5.7307) β βZZ(5.7307) Β»\n", + "q0_3: β€ H ββββββββββββββββ ββββββββββββββββββββββββββΌββββββββββββββ ββββββββββββΒ»\n", + " βββββ€ βZZ(5.7307) Β»\n", + "q0_4: β€ H ββββββββββββββββββββββββββββββββββββββββββ ββββββββββββββββββββββββββΒ»\n", + " βββββ€ Β»\n", + "q0_5: β€ H ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββΒ»\n", + " βββββ Β»\n", + "Β« Β»\n", + "Β«q0_0: βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ ββββββββββββΒ»\n", + "Β« βββββββββββββββ β Β»\n", + "Β«q0_1: ββ ββββββββββββ€ Rx(-2.7437) ββββββββββββββββββββββββββββββββΌββββββββββββΒ»\n", + "Β« β βββββββββββββββ βββββββββββββββ βZZ(1.3234) Β»\n", + "Β«q0_2: ββΌββββββββββββββ ββββββββββββββ ββββββββββββ€ Rx(-2.7437) ββββ ββββββββββββΒ»\n", + "Β« β β β ββββββββββββββββββββββββββββββΒ»\n", + "Β«q0_3: ββΌββββββββββββββΌββββββββββββββΌββββββββββββββ βββββββββββββ€ Rx(-2.7437) βΒ»\n", + "Β« β βZZ(5.7307) β β βββββββββββββββΒ»\n", + "Β«q0_4: ββΌββββββββββββββ ββββββββββββββΌββββββββββββββΌβββββββββββββββ ββββββββββββΒ»\n", + "Β« βZZ(5.7307) βZZ(5.7307) βZZ(5.7307) βZZ(5.7307) Β»\n", + "Β«q0_5: ββ ββββββββββββββββββββββββββββ ββββββββββββββ βββββββββββββββ ββββββββββββΒ»\n", + "Β« Β»\n", + "Β« ββββββββββββββββ Β»\n", + "Β«q0_0: βββ βββββββββββββββββββββββββββ ββββββββββββ€ Rx(-0.48711) ββββββββββββββΒ»\n", + "Β« β β ββββββββββββββββ Β»\n", + "Β«q0_1: βββΌββββββββββββββ βββββββββββββΌββββββββββββββ βββββββββββββββ βββββββββββΒ»\n", + "Β« β βZZ(1.3234) β β β Β»\n", + "Β«q0_2: βββΌββββββββββββββ βββββββββββββΌββββββββββββββΌβββββββββββββββΌβββββββββββΒ»\n", + "Β« βZZ(1.3234) β βZZ(1.3234) β Β»\n", + "Β«q0_3: βββ βββββββββββββββββββββββββββΌββββββββββββββ βββββββββββββββΌβββββββββββΒ»\n", + "Β« βββββββββββββββ βZZ(1.3234) β Β»\n", + "Β«q0_4: β€ Rx(-2.7437) ββββββββββββββββ βββββββββββββββββββββββββββββΌβββββββββββΒ»\n", + "Β« βββββββββββββββ€ βZZ(1.3234) Β»\n", + "Β«q0_5: β€ Rx(-2.7437) βββββββββββββββββββββββββββββββββββββββββββββ βββββββββββΒ»\n", + "Β« βββββββββββββββ Β»\n", + "Β« Β»\n", + "Β«q0_0: βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββΒ»\n", + "Β« ββββββββββββββββ Β»\n", + "Β«q0_1: β€ Rx(-0.48711) ββββββββββββββββββββββββββββββββββββββββββββββΒ»\n", + "Β« ββββββββββββββββ ββββββββββββββββ Β»\n", + "Β«q0_2: βββ βββββββββββββββ ββββββββββββ€ Rx(-0.48711) βββββββββββββββββΒ»\n", + "Β« β β ββββββββββββββββββββββββββββββββΒ»\n", + "Β«q0_3: βββΌβββββββββββββββΌββββββββββββββ ββββββββββββββ€ Rx(-0.48711) βΒ»\n", + "Β« βZZ(1.3234) β β ββββββββββββββββΒ»\n", + "Β«q0_4: βββ βββββββββββββββΌββββββββββββββΌββββββββββββββββ βββββββββββββΒ»\n", + "Β« βZZ(1.3234) βZZ(1.3234) βZZ(1.3234) Β»\n", + "Β«q0_5: ββββββββββββββββββ ββββββββββββββ ββββββββββββββββ βββββββββββββΒ»\n", + "Β« Β»\n", + "Β« \n", + "Β«q0_0: ββββββββββββββββ\n", + "Β« \n", + "Β«q0_1: ββββββββββββββββ\n", + "Β« \n", + "Β«q0_2: ββββββββββββββββ\n", + "Β« \n", + "Β«q0_3: ββββββββββββββββ\n", + "Β« ββββββββββββββββ\n", + "Β«q0_4: β€ Rx(-0.48711) β\n", + "Β« ββββββββββββββββ€\n", + "Β«q0_5: β€ Rx(-0.48711) β\n", + "Β« ββββββββββββββββ" + ] + }, + "execution_count": 17, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "#create the optimized QAOA circuit for qiskit backend\n", + "optimized_angles = opt_results.optimized['angles']\n", + "variational_params.update_from_raw(optimized_angles)\n", + "optimized_circuit = q.backend.qaoa_circuit(variational_params)\n", + "\n", + "#print the optimized QAOA circuit for qiskit backend\n", + "optimized_circuit.draw()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Step 5: Running on Azure Quantum backend\n", + "\n", + "Now that we have demonstrated how to create a problem, configure the QAOA model, compile and access the opimization results, we will show how to execute the circuit using Azure Quantum backend." + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [], + "source": [ + "# Once again we define the parameters for our QAOA\n", + "q_qpu = QAOA()\n", + "\n", + "# Set the properties you want - These values are actually the default ones!\n", + "q_qpu.set_circuit_properties(p=1, param_type='standard', init_type='ramp', mixer_hamiltonian='x')\n", + "\n", + "q_qpu.set_backend_properties(n_shots=500)\n", + "\n", + "# Set the classical method used to optimiza over QAOA angles and its properties, note that to make the computation leaner we set a tollerance of 0.05\n", + "q_qpu.set_classical_optimizer(method='cobyla', maxiter=100, tol=0.01, optimization_progress=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [], + "source": [ + "# Here are some of the simulators available through Azure Quantum, replacing the device with a real qpu\n", + "ionq_sim = 'ionq.simulator'\n", + "quantinuum_sim = 'quantinuum.sim.h1-1e'\n", + "rigetti_sim = 'rigetti.sim.qvm'\n", + "\n", + "# Set the backend you want to use here.\n", + "# WARNING: Quantinuum simulator usage is not unlimited. Running this sample against it could consume a significant amount of your eHQC quota.\n", + "backend_to_use = rigetti_sim" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [], + "source": [ + "# Connect to the Azure Quantum workspace through OpenQAOA\n", + "resource_id = ''\n", + "az_location = ''\n", + "\n", + "# Set a quantum device to run our instance\n", + "device = create_device(location='azure', name=backend_to_use, resource_id=resource_id, az_location=az_location)" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [], + "source": [ + "q_qpu.set_device(device)" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [], + "source": [ + "# We use the same MaxCut problem we define in the first step\n", + "q_qpu.compile(maxcut_qubo)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Job submission to the Azure Quantum backend is made internally in the optimization loop in OpenQAOA. You can submit Jobs one at a time using the optimization loop or group them with the help of the Azure Quantum Session feature.\n", + "\n", + "This cell can take a few minutes to execute (note that executing on real QPUs can take longer run time)." + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "..............................................................................................................................." + ] + } + ], + "source": [ + "# Job submission to Azure Quantum backend is done internally\n", + "# q_qpu.optimize()\n", + "\n", + "# Jobs can also be grouped using Azure sessions\n", + "with q_qpu.device.backend_device.open_session(name=\"QAOA\") as session:\n", + " q_qpu.optimize()" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [], + "source": [ + "result_qpu = q_qpu.result" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0wAAAK9CAYAAAAXJOy/AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAACPfUlEQVR4nOzdd3hU1drG4WcIaYQUmhQJvROagApIUxQRsXek2I4KioiiYgNUwHaOWLEcj6IHu6JHLFhoioIUQUB6752EUEJI9vfH+iYhQELKzKzZM7/7uubaO5PJnicTyrxZa73L4ziOIwAAAADACUrZDgAAAAAAwYqCCQAAAADyQcEEAAAAAPmgYAIAAACAfFAwAQAAAEA+KJgAAAAAIB8UTAAAAACQDwomAAAAAMgHBRMAAAAA5IOCCQAQst599115PB7NnTv3lI/t0qWLunTp4v9QAABXoWACABTb6tWrdfvtt6tOnTqKiYlRQkKCOnTooBdffFGHDh3y+fMdPHhQI0aM0LRp03x+7eL47bffNGLECO3bt892FACAn5S2HQAA4E7ffPONrr76akVHR6tv375KSUnRkSNH9Ouvv2ro0KFasmSJ3nzzTZ8+58GDBzVy5EhJ8vlo0A8//FDkr/ntt980cuRI9e/fX0lJST7NAwAIDhRMAIAiW7t2ra677jrVrFlTU6ZMUdWqVXM+N3DgQK1atUrffPONxYRFFxUVZTuCJMlxHB0+fFixsbG2owAAxJQ8AEAxPPvss0pPT9fbb7+dp1jyqlevnu65556cj48ePaonn3xSdevWVXR0tGrVqqWHH35YGRkZeb5u7ty56t69uypWrKjY2FjVrl1bN998syRp3bp1qlSpkiRp5MiR8ng88ng8GjFixCnzZmRkaMiQIapUqZLi4uJ0+eWXa+fOnXkec7I1TC+//LKaNm2qMmXKqFy5cmrTpo0++OADSdKIESM0dOhQSVLt2rVz8qxbt65I33OtWrV08cUXa/LkyWrTpo1iY2P1xhtvqHPnzmrRosVJv5+GDRuqe/fup/y+AQAlxwgTAKDIvv76a9WpU0ft27cv1ONvvfVWjR8/XldddZXuu+8+zZ49W2PGjNHSpUs1ceJESdKOHTt0wQUXqFKlSnrooYeUlJSkdevW6YsvvpAkVapUSePGjdOdd96pyy+/XFdccYUkqXnz5qd8/rvvvlvlypXT8OHDtW7dOo0dO1Z33XWXPv7443y/5q233tKgQYN01VVX6Z577tHhw4f1119/afbs2brhhht0xRVXaMWKFfrwww/1wgsvqGLFijk5C/s9ey1fvlzXX3+9br/9dt12221q2LChypYtq9tuu02LFy9WSkpKzmPnzJmjFStW6NFHHy3Uaw8AKCEHAIAiSE1NdSQ5l156aaEev2DBAkeSc+utt+a5//7773ckOVOmTHEcx3EmTpzoSHLmzJmT77V27tzpSHKGDx9eqOd+5513HElOt27dnOzs7Jz77733XiciIsLZt29fzn2dO3d2OnfunPPxpZde6jRt2rTA6z/33HOOJGft2rV57i/s9+w4jlOzZk1HkvP999/neey+ffucmJgY58EHH8xz/6BBg5y4uDgnPT29wGwAAN9gSh4AoEjS0tIkSfHx8YV6/LfffitJGjJkSJ7777vvPknKWevkbZowadIkZWZm+iJqjn/84x/yeDw5H3fs2FFZWVlav359vl+TlJSkTZs2ac6cOUV+vsJ+z161a9c+YYpdYmKiLr30Un344YdyHEeSlJWVpY8//liXXXaZ4uLiipwLAFB0FEwAgCJJSEiQJO3fv79Qj1+/fr1KlSqlevXq5bm/SpUqSkpKyilaOnfurCuvvFIjR45UxYoVdemll+qdd945Yc1PcdSoUSPPx+XKlZMk7d27N9+vefDBB1W2bFmdeeaZql+/vgYOHKiZM2cW6vkK+z171a5d+6TX6du3rzZs2KBffvlFkvTTTz9p+/bt6tOnT6FyAABKjoIJAFAkCQkJqlatmhYvXlykrzt2hCe/z3/22Wf6/fffddddd2nz5s26+eab1bp1a6Wnp5cksiIiIk56v3fk5mQaN26s5cuX66OPPtI555yjzz//XOecc46GDx9e6Oc91ffslV9HvO7du6ty5cr673//K0n673//qypVqqhbt26FzgAAKBkKJgBAkV188cVavXq1fv/991M+tmbNmsrOztbKlSvz3L99+3bt27dPNWvWzHP/2WefrVGjRmnu3LmaMGGClixZoo8++khS4QsQX4mLi9O1116rd955Rxs2bFDPnj01atQoHT58uMA8Rf2e8xMREaEbbrhBn332mfbu3asvv/xS119/fb4FIADA9yiYAABF9sADDyguLk633nqrtm/ffsLnV69erRdffFGSdNFFF0mSxo4dm+cx//rXvyRJPXv2lGSmxx0/4tOyZUtJypmWV6ZMGUnSvn37fPJ9FGT37t15Po6KilKTJk3kOE7OGivvOqLj8xT2ey6MPn36aO/evbr99tuVnp6uG2+8sSjfBgCghGgrDgAosrp16+qDDz7Qtddeq8aNG6tv375KSUnRkSNH9Ntvv+nTTz9V//79JUktWrRQv3799Oabb2rfvn3q3Lmz/vjjD40fP16XXXaZunbtKkkaP368XnvtNV1++eWqW7eu9u/fr7feeksJCQk5BUhsbKyaNGmijz/+WA0aNFD58uWVkpKSp+22r1xwwQWqUqWKOnTooMqVK2vp0qV65ZVX1LNnz5yGF61bt5YkPfLII7ruuusUGRmpXr16Ffp7LoxWrVopJSVFn376qRo3bqwzzjjD598rAKAAdpv0AQDcbMWKFc5tt93m1KpVy4mKinLi4+OdDh06OC+//LJz+PDhnMdlZmY6I0eOdGrXru1ERkY6ycnJzrBhw/I8Zv78+c7111/v1KhRw4mOjnZOO+005+KLL3bmzp2b5zl/++03p3Xr1k5UVNQpW4x724of36p86tSpjiRn6tSpOfcd31b8jTfecDp16uRUqFDBiY6OdurWresMHTrUSU1NzXOtJ5980jn99NOdUqVK5WkxXpjv2XFMW/GePXsW9DI7zz77rCPJGT16dIGPAwD4nsdxCljxCgAArHvxxRd17733at26dSd0/AMA+BcFEwAAQcxxHLVo0UIVKlTQ1KlTbccBgLDDGiYAAILQgQMH9L///U9Tp07VokWL9NVXX9mOBABhiREmAACC0Lp161S7dm0lJSVpwIABGjVqlO1IABCWKJgAAAAAIB/swwQAAAAA+aBgAgAAAIB8hFXTh+zsbG3ZskXx8fHyeDy24wAAAACwxHEc7d+/X9WqVVOpUvmPI4VVwbRlyxYlJyfbjgEAAAAgSGzcuFHVq1fP9/NhVTDFx8dLMi9KQkKC5TQAAAAAbElLS1NycnJOjZCfsCqYvNPwEhISKJgAAAAAnHKpDk0fAAAAACAfFEwAAAAAkA8KJgAAAADIR1itYQIAAADcxnEcHT16VFlZWbajuEpERIRKly5d4u2EKJgAAACAIHXkyBFt3bpVBw8etB3FlcqUKaOqVasqKiqq2NegYAIAAACCUHZ2ttauXauIiAhVq1ZNUVFRJR4tCReO4+jIkSPauXOn1q5dq/r16xe4OW1BKJgAAACAIHTkyBFlZ2crOTlZZcqUsR3HdWJjYxUZGan169fryJEjiomJKdZ1aPoAAAAABLHijozAN68drz4AAAAA5IOCCQAAAADyQcEEAAAAAPmgYAIAAADgc9u2bdPdd9+tOnXqKDo6WsnJyerVq5d+/vnnEl/73XffVVJSUslDFgJd8gAAAAD41Lp169ShQwclJSXpueeeU7NmzZSZmanJkydr4MCBWrZsme2IhcYIEwAAAOAyBw7kfzt8uPCPPXTo1I8tjgEDBsjj8eiPP/7QlVdeqQYNGqhp06YaMmSIZs2aJUnasGGDLr30UpUtW1YJCQm65pprtH379pxrLFy4UF27dlV8fLwSEhLUunVrzZ07V9OmTdNNN92k1NRUeTweeTwejRgxonhBC4GCCQAAAHCZsmXzv115Zd7HnnZa/o/t0SPvY2vVOvExRbVnzx59//33GjhwoOLi4k74fFJSkrKzs3XppZdqz549mj59un788UetWbNG1157bc7jevfurerVq2vOnDmaN2+eHnroIUVGRqp9+/YaO3asEhIStHXrVm3dulX3339/0YMWElPyAAAAAPjMqlWr5DiOGjVqlO9jfv75Zy1atEhr165VcnKyJOm9995T06ZNNWfOHLVt21YbNmzQ0KFDc65Tv379nK9PTEyUx+NRlSpV/PvNiIIJAAAAcJ309Pw/FxGR9+MdO/J/7PH7uq5bV+xIORzHOeVjli5dquTk5JxiSZKaNGmipKQkLV26VG3bttWQIUN066236v3331e3bt109dVXq27duiUPWERMyQMAAABcJi4u/1tMTOEfGxt76scWVf369eXxeErc2GHEiBFasmSJevbsqSlTpqhJkyaaOHFiia5ZHBRMAAAAAHymfPny6t69u1599VUdOEnXiH379qlx48bauHGjNm7cmHP/33//rX379qlJkyY59zVo0ED33nuvfvjhB11xxRV65513JElRUVHKysry/zcjFxVM48aNU/PmzZWQkKCEhAS1a9dO3333ne1YAAAAAI7z6quvKisrS2eeeaY+//xzrVy5UkuXLtVLL72kdu3aqVu3bmrWrJl69+6t+fPn648//lDfvn3VuXNntWnTRocOHdJdd92ladOmaf369Zo5c6bmzJmjxo0bS5Jq1aql9PR0/fzzz9q1a5cOHjzot+/FNQVT9erV9fTTT2vevHmaO3euzj33XF166aVasmSJ7WgAAAAAjlGnTh3Nnz9fXbt21X333aeUlBSdf/75+vnnnzVu3Dh5PB599dVXKleunDp16qRu3bqpTp06+vjjjyVJERER2r17t/r27asGDRrommuuUY8ePTRy5EhJUvv27XXHHXfo2muvVaVKlfTss8/67XvxOIVZlRWkypcvr+eee0633HJLoR6flpamxMREpaamKiEhwc/pAAAAgOI7fPiw1q5dq9q1ayvm+IVJKJSCXsPC1gau7JKXlZWlTz/9VAcOHFC7du3yfVxGRoYyMjJyPk5LSwtEPAAAAAAhwjVT8iRp0aJFKlu2rKKjo3XHHXdo4sSJeRaFHW/MmDFKTEzMuR3bthBFs369tHKl7RQAAABAYLmqYGrYsKEWLFig2bNn684771S/fv30999/5/v4YcOGKTU1Ned2bBcOFF52ttn1uUEDKTXVdhoAAAAgcFw1JS8qKkr16tWTJLVu3Vpz5szRiy++qDfeeOOkj4+OjlZ0dHQgI4akvXtzz1eulNq0sZcFAAAACCRXjTAdLzs7O88aJfjHsbtDb91qLwcAAEA4cnGPNut88dq5ZoRp2LBh6tGjh2rUqKH9+/frgw8+0LRp0zR58mTb0UJe1aq55xs22MsBAAAQTiIjIyVJBw8eVGxsrOU07uTdn8n7WhaHawqmHTt2qG/fvtq6dasSExPVvHlzTZ48Weeff77taCEvKUm65x7pxRdN8wcAAAD4X0REhJKSkrTj/6f7lClTRh6Px3Iqd3AcRwcPHtSOHTuUlJSkiIiIYl/LNQXT22+/bTtCWGvZUurcWapZ03YSAACA8FGlShVJyimaUDRJSUk5r2FxuaZggj3z5plRpn//W/r/nhsAAAAIAI/Ho6pVq+q0005TZmam7TiuEhkZWaKRJS8KJpzSf/4jvfaa9Nhj0hNP2E4DAAAQfiIiInzy5h9F5+oueQgM7whwpUpSZqbZlwkAAAAIBxRMOCVvwTRokBQdLa1bZzUOAAAAEDAUTDilnTtzzx2HTnkAAAAIHxRMOCXvCFO1auZIwQQAAIBwQcGEAh09Ku3ebc7btDFHNq8FAABAuKBgQoF27TJHj0c64wxzzggTAAAAwgVtxVGg+Hjpo4+k1FQpJsbcxwgTAAAAwgUFEwoUFydde605nz7dHBlhAgAAQLigYEKh1akjdeokNWhgOwkAAAAQGBRMKNDixdLKlVLjxlKjRrmjTAAAAEA4oOkDCvTRR9IVV0ivvGI7CQAAABB4FEwokHcPptNOy73vyBHp0CE7eQAAAIBAomBCgXbuNMdKlcxxwADTLe+11+xlAgAAAAKFggkFOn6EKSFBchxaiwMAACA8UDChQN4RJm/BVKOGOdJaHAAAAOGAggkFOn6EqWZNc2SECQAAAOGAggn5ysiQUlPNuXcNk7dgYoQJAAAA4YB9mJAvj0f65BMzypSUZO7zTsnbs0dKT5fKlrUWDwAAAPA7CibkKypKuvrqvPclJJjiad8+My2vSRMbyQAAAIDAoGBCkV1+uZSZKUVG2k4CAAAA+BcFE/K1YoW0eLFUv77UrFnu/f/5j71MAAAAQCDR9AH5mjRJuvJK6emnbScBAAAA7KBgQr6Obyl+rCNHpF27ApsHAAAACDQKJuTLu2mtt6W411dfSTEx0mWXBTwSAAAAEFAUTMhXfiNMlStLjsPmtQAAAAh9FEzIV34Fk3fz2s2bTbc8AAAAIFRRMCFfBY0wRUVJ2dnSli2BzwUAAAAECgUT8pXfGqZSpaTkZHO+fn1gMwEAAACBxD5MOCnHkd55x4wyVat24udr1JBWr6ZgAgAAQGijYMJJeTzS1Vfn/3nvOiYaPwAAACCUUTChWDp3lo4elVJSbCcBAAAA/MfjOI5jO0SgpKWlKTExUampqUpISLAdJ6itXy/NnSvVqSO1amU7DQAAAOBbha0NaPqAk5oyRbrqKumRR2wnAQAAAOyhYMJJeVuKH98h71iZmdLataZBBAAAABCKWMOEk/K2FD9+DyavjAwpLk7KyjKPrVgxcNkAAACAQGGECSeV36a1XtHRuUUSnfIAAAAQqiiYcFKFmZLnbS3OXkwAAAAIVRRMOKlTjTBJZvNaiREmAAAAhC4KJpyUdw0TI0wAAAAIZzR9wEm99JK0datUt27+j/GOMFEwAQAAIFRRMOGkLr/81I/xjjAxJQ8AAAChioIJxdakiXTjjVKzZraTAAAAAP5BwYQTbN0qzZxpptydeWb+j6tfX3r//cDlAgAAAAKNpg84wezZ0tVXS4MG2U4CAAAA2EXBhBN4O+QV1FLcKzNTWrtW2rvXv5kAAAAAGyiYcILCbFrrdemlUp060uef+zcTAAAAYAMFE05QmE1rvdi8FgAAAKGMggknKMqUPDavBQAAQCijYMIJijPCRMEEAACAUETBhBMUZQ0Tm9cCAAAglLEPE07w9NNmxKgwG9J6C6aNG6WsLCkiwr/ZAAAAgECiYMIJLrqo8I+tWtUUSUePStu2Saef7r9cAAAAQKBRMKFESpeWBg6UypaVIiNtpwEAAAB8i4IJeezZI/38sxkpat++cF/z4ov+zQQAAADYQsGEPBYvlq65RmrQQFq+3HYaAAAAwC4KJuRRlA55XpmZ0qZNpulDvXr+yQUAAADYQFtx5FGUTWu93n1XqlNHGjzYH4kAAAAAeyiYkEdxRpjYvBYAAAChioIJeXgLpqKMMLF5LQAAAEIVBRPyKE7B5B1hSkuT9u3zeSQAAADAGgom5OFdw1SUKXllykgVK5pzRpkAAAAQSiiYkMcjj0jjxklnnlm0r/NOy2MdEwAAAEIJbcWRx/nnm1tR1aghzZvHCBMAAABCCwUTfOLKK6XGjaXWrW0nAQAAAHyHggk50tOlb7+VKleWOncu2tf27u2fTAAAAIBNFEzIsXatdO21poGDt/kDAAAAEM5o+oAcxemQ55WVJa1bJ/32m08jAQAAAFYxwoQcxdmDyWvPHql2bcnjkQ4flqKifJsNAAAAsIERJuQoScFUsaIUGys5jrRxo29zAQAAALZQMCGHd0pecQomj8e0FpdoLQ4AAIDQQcGEHN4RpuKsYZLYvBYAAAChh4IJOUoywiQxwgQAAIDQQ9MH5Bg8WOreXerUqXhfzwgTAAAAQg0FE3J06lT8YknKHWGiYAIAAECooGCCz7RtKz38sNSihe0kAAAAgG9QMEGSlJkpTZxoGj507iyVKsbqtsaNpVGjfJ8NAAAAsIWCCZKk7dula6+VSpeWMjJspwEAAACCA13yICm3Q17FisUbXfLauFGaMSP3egAAAICbUTBBUu4eTMVtKe513XVmSt+0aSWOBAAAAFhHwQRJviuYaC0OAACAUELBBEkl37TWi81rAQAAEEoomCApd4SpUqWSXYcRJgAAAIQSCiZIYoQJRbNokfTtt7ZTAAAA+J9rCqYxY8aobdu2io+P12mnnabLLrtMy5cvtx0rZNx6q/TGG1KPHiW7DiNMoe/QIal5c6lnT2npUttpAAAA/Ms1BdP06dM1cOBAzZo1Sz/++KMyMzN1wQUX6MCBA7ajhYR27aR//ENq1apk1/GOMO3dK+3fX/JcCD4ffZR7Pn++vRwAAACB4JqNa7///vs8H7/77rs67bTTNG/ePHXq1MlSKhwvIUEaMUKqWrVk+zkheL32Wu75ypX2cgAAAASCawqm46WmpkqSypcvn+9jMjIylJGRkfNxWlqa33O51SefmE1rzzlHiooq2bWGD/dNJgSf7dulTZtyP162zF4WAACAQHBlwZSdna3BgwerQ4cOSklJyfdxY8aM0ciRIwOYzJ0OHpSuvdacp6WVvGBC6Kpc2TT0eOMNczznHNuJAAAA/MvjOI5jO0RR3Xnnnfruu+/066+/qnr16vk+7mQjTMnJyUpNTVVCQkIgorrC+vVSrVpSdLRZ0O/xlOx6O3dKf/9tpueVdE0UAAAA4A9paWlKTEw8ZW3gulUmd911lyZNmqSpU6cWWCxJUnR0tBISEvLccCLvHkynnVbyYkmS3n1X6tJFev75kl8LwWPtWikry3YKAACAwHJNweQ4ju666y5NnDhRU6ZMUe3atW1HChm+2rTWi9bioSc7W+rWTapTR1q40Ny3Y4c0bRo/ZwAAENpcUzANHDhQ//3vf/XBBx8oPj5e27Zt07Zt23To0CHb0Vzv2BEmX2Dz2tDzww/SmjVSaqpUr5657+67pa5dpc8/t5sNAADAn1xTMI0bN06pqanq0qWLqlatmnP7+OOPbUdzvZ07zdFXBZN3hGnzZikz0zfXhF3eVuL9+0txcea8USNzZPNaAAAQylzTJc+FvSlcw9dT8ipXNp32jhwxRVOtWr65LuxYt06aNMmc33ln7v3egonW4gAAIJS5pmCC/1x/vdSwoVRAh/YiKVVKSk6WVq820/IomNztzTclxzFrmBo2zL2fggkAAIQDCiaodWtz86WaNU3BREMAd8vIkP79b3M+YEDez3mLp127zK1ixcBmAwAACATXrGGCuwwYIL3+utSune0kKInJk80at9NPl3r1yvu5MmVy16sxygQAAEIVI0zQl1+aTWbPPtu8CfaFK6/0zXVgV69e0qxZ0vbtUumT/GvRqJEZRVy6VDrnnMDnAwAA8DePE0bdFAq7m284cRwpJsY0aFi3LnfEACiML780TUPOPTe33TgAAIAbFLY2YIQpzO3fb4olyXdd8iTp4EFpzhxp717psst8d10ETmamFBlZ8GP42QIAgFDHGqYw520pHhfnu+l4kmkn3qWL1Lu3GcWCu+zbJ1WvLt1xhyl+AQAAwhUFU5jz9aa1XsnJ5njwoLR7t2+vDf977z1TTP/6qxQbm//jHEf67Tfp7belw4cDlw8AACBQKJjCnHeEydcFU0yM2cBWorW42ziO9Npr5nzAAMnjKfjxF18s3XqrtHy5/7MBAAAEGgVTmPMWTL5cv+TlbSCxYYPvrw3/mTrVFD9ly0o33ljwYz0eqXFjc05rcQAAEIoomMKcv6bkSbkFEyNM7uIdXerb17SbP5VGjcxx6VL/ZQIAALCFLnlhrlcvUyzVrev7a9eoYY6MMLnH5s2mVbgk3Xln4b6GESYAABDKKJjCXLNm5uYPjDC5z1tvSVlZUqdOUkpK4b6GESYAABDKKJjgN+edJ73+utS8ue0kKKxbb5Wys6Uzzyz813gLphUrTLEVEeGfbAAAADZ4HCd8dskp7G6+4eTbb6WoKPMGmZcExZGVZfbwOnJEWrNGql3bdiIAAIBTK2xtwAhTmLvlFmnbNunPP6WWLW2ngRtFREj/+Y9UpUpuK3kAAIBQQZe8MJadLe3aZc790VZckn7/XXr//dxufAhOf/8t9eghffNN8b6+d28zBbNMGd/mAgAAsI2CKYzt2ycdPWrO/VUw3XabaU+9YIF/rg/fGDdO+v576e23bScBAAAILhRMYcy7aW1SklnH5A90ygt+6enS+PHmfMCA4l1j1y4zkvjGG77LBQAAEAxYwxTGvAWTPzat9aJgCn4TJkj790sNGkjnnlu8a2zcaEYSK1aUbr/dt/kAAABsYoQpjHnXFflrOp7E5rXBznGk114z53feKZUq5r8IDRqY465dueviAAAAQgEFUxhjhAm//Sb99ZcUGyv171/868TF5f6sly3zSTQAAICgQMEUxrp2ld56yzRm8BdGmILbq6+aY+/eZi1bSXg3sKVgAgAAoYQ1TGGsUaPcN7n+4h112LjRbHAaEeHf50PRXHihKXDuvLPk12rUSJo8WVq6tOTXAgAACBYUTPCrqlWl1183hZPj2E6D4/XtK/XpI3k8Jb9W48bmyAgTAAAIJRRMYeynn8yxdWupXDn/PEdEBF3Tgp0viiWJKXkAACA0sYYpjA0aJJ1/vvTnn7aTINCmTpVeeUVKS/PdNc84Q/ruO+nnn313TQAAANsYYQpj3rbi/uySJ5kRh7lzpbp1pXbt/PtcKJynn5Z++EHaskUaPdo314yPN2uiAAAAQgkjTGHq6FFp925z7u+C6b//Netk3n/fv8+Dwlm50hRLHo9/OyQCAACEAkaYwtTu3aYJg8cjVajg3+fydsqjtXhweP11c7zoIql2bd9ee/ZsMy2vWTPpyit9e20AAAAbGGEKU95NaytU8H+rbzavDR4HD0rvvGPOBwzw/fVnzJBGjpQ++8z31wYAALCBgilMedcvVark/+di89rg8fHH0t69ZmSpe3ffX9/bKY+9mAAAQKigYApT3hEmf69fknILprQ0ad8+/z8f8vfaa+Z4553+GVn07sW0fLmUne376wMAAAQaBVOYOvNM6e23pXvu8f9zlSkjVaxozhllsufAAal6dSkuTrrpJv88R61aUlSUdPgwUzABAEBooOlDmKpTx9wCpWZNadcu8ya6efPAPS9yxcVJEydKqalSYqJ/nqN0aalBA2nxYtNO3tdNJQAAAAKNESYExKhR0rffsg9TMPBXseTFOiYAABBKGGEKU9OnSxkZUqtWgWn84I8GAyi86dOl5OTAjCp61zEtW+b/5wIAAPA3RpjC1MMPmyJm+nTbSeBv2dnSzTdL9eqZPZL87fbbpRUrchtMAAAAuBkjTGHK21Y8EF3yJLN+6bvvpKNH/ddwACc3ebK0Zo2UlCR17uz/5zv9dP8/BwAAQKBQMIWpQLYVl0yzh759papVKZgCzTvSc9NNpmMhAAAACo8peWHoyBHTKU0KXMHk3Ytp61azdgqBsW6d9M035vyOOwL3vOPGSTfeKC1YELjnBAAA8AcKpjDknY4XEWGmaQVCxYpSbKw537QpMM8J6Y03JMeRzj/ftPsOlK++kiZMkObODdxzAgAA+AMFUxjyTserVEkqFaA/AR5P7igTm9cGRkaG9O9/m/MBAwL73N7W4nTKAwAAbkfBFIYC3fDBq2ZNc1y/PrDPG64WL5YyM6Xq1aWLLw7sc7MXEwAACBU0fQhDTZpIb7+dO0UuULwjTBRMgdG6tbR5s7RypVQ6wH/T2YsJAACECgqmMFS9utmXJ9C8I0xMyQucuDipZcvAP693hGntWunwYSkmJvAZAAAAfIGCCQFzzTVm1MP7Zhr+s3Kl2ajW47Hz/KedJpUrJ+3dazaxbd7cTg4AAICSYg1TGJo1S/rhB2nbtsA+b4MGUo8eUu3agX3ecLNvnxlVSkmRtm+3k8HjMYVxRAQjigAAwN0omMLQ6NFS9+7S11/bTgJ/eO896eBB0wEx0I09jvX559KBA4FvOAEAAOBLFExhyNtW3Mab6Q8/lEaNMlO14HuOI732mjkfMMDelDxJqlpVio629/wAAAC+wBqmMHTsPkyB9sADZuPabt2ks84K/POHuilTpOXLpbJlpRtvtJ0GAADA/RhhCkM2R5jYvNa/vKNLfftK8fF2s6SlmW6MnTtL2dl2swAAABQXBVOYOXjQrCuR7BRMbF7rP5s2SV99Zc7vvNNuFkkqU0aaMEGaMYOfNwAAcC8KpjCzc6c5RkXZGYFg81r/+egjKStL6tTJdMizrXRp0xlRYgNbAADgXqxhCjPHTsez0RCAzWv9Z8gQqUULKTbWdpJcjRpJixebgqlHD9tpAAAAio6CKczUrCm9847d55cYYfKHUqWk88+3nSIv7ybFS5fazQEAAFBcFExh5rTTpP797T0/TR/8IzNTioy0neJEjRubI1PyAACAW7GGCQFVr5707bfSL7+YPYNQckuWSNWqSQ8/HHyvqXeEiYIJAAC4FSNMYWb+fNP4oWlTqXr1wD9/TAxrWXxt3Dhp1y6z/5LNjWpPpmFDM1WwbFkpPd0cAQAA3IQRpjDz4ovShReads9wv/37pffeM+cDBtjNcjJxcaaN/Zo1FEsAAMCdGGEKMzY3rfWaNk367TfpnHNMC2wU33//a4qmhg2lc8+1nebkYmJsJwAAACg+RpjCTDAUTJ9/Lj3yiPTdd/YyhALHkV57zZzfeWfwTccDAAAIBRRMYca7ca3NgolOeb7x669mj6PYWKlfP9tp8jd9uhlJ7NvXdhIAAICiY0peGHGc3BGmSpXs5WAvJt/wji717i0lJVmNUiDHMV0RN2+2nQQAAKDoKJjCSHq6lJFhzimY3G/4cDNSeNNNtpMUzLsX09q10uHDrGkCAADuwpS8MOIdXYqLMzdbvFPytmwxG66ieBo1Ml0PW7a0naRgp51mRsAcR1qxwnYaAACAoqFgCiMVKkjvvCM9/7zdHJUrS1FRUnY207TCgceTO8rEBrYAAMBtKJjCSFKS1L+/dMcddnOUKiUlJ5tzGj8U3ddfS9ddJ/3+u+0khdeokTkuXWo3BwAAQFGxhglWfPCB2ci0bl3bSdzn5ZelH3+UatWS2rWznaZwvAUTI0wAAMBtKJjCyKJFZgpco0bmzbZNZ55p9/ndasUKUyx5PPZHCouicWPp9NODu5sfAADAyTAlL4y8/bbUo4f0+uu2k6C4vD+7nj3tF71FcfHF0qZN0rhxtpMAAAAUDSNMYcTbJc/mprVeq1dLH31kpuXdc4/tNO5w8KBp2iFJAwbYzVJUHo/tBAAAAMXDCFMYCaaCad066dFHGe0qig8/lPbtk2rXlrp3t52m+BzHdgIAAIDCo2AKIzt3mmMwFEzevZjWr+cNdGE4jvTqq+b8zjtNp0G3GTnSrGMaO9Z2EgAAgMJjSl4Y8Y4wVapkN4eU21b80CFp926pYkW7eYJddrZ0441mo9+bbrKdpniOHjWbFdMpDwAAuIkLf0+N4sjOlnbtMufBMMIUEyNVqWLO16+3m8UNIiKkIUNMp0O3FpfsxQQAANyIgilM7NtnfsMvBccIk5Q7LY/Na8ND48bmyAgTAABwE6bkhYnoaGn8eGnvXikqynYao2ZN6Y8/GGE6lQ8/NMXu1VebkTm3atjQHHfuNNMwK1SwmwcAAKAwKJjCRFyc1Lev7RR5McJ0allZ0iOPSGvXmvP+/W0nKr64OPMz37DBjDJ16GA7EQAAwKkxJQ/W3H23tHix9MQTtpMEr8mTTbFUrpx0zTW205Scdx0T0/IAAIBbMMIUJpYvl9askerXl+rVs53GqFnTdoLg99pr5njTTVKZMnaz+EK7dlJGhpSUZDsJAABA4VAwhYmPP5aGD5f+8Q/pjTdsp0FhrF0rffutOb/jDrtZfGXECNsJAAAAioYpeWHCuwdTMLQU98rKkkaNkm6/XTp40Haa4PP662bD2gsuMCODAAAACDwKpjARTJvWepUqJT3zjPTmm9LGjbbTBJfDh6W33zbnAwbYzeIPBw+aghkAACDYUTCFiWAcYfJ4ctcx0Vo8rx07pObNTVe5nj1tp/GtM84wHfP+/tt2EgAAgFNzVcE0Y8YM9erVS9WqVZPH49GXX35pO5Jr7NxpjsFUMEm0Fs9PjRrSlCnSX39JpUNspaF3Lyk65QEAADdwVcF04MABtWjRQq+++qrtKK4TjFPyJEaYTiUx0XYC3/O2Fl+61G4OAACAwnDV76579OihHj16FPrxGRkZysjIyPk4LS3NH7GC3tGj0u7d5pwRpuA3aZLUtq1UubLtJP7BXkwAAMBNXDXCVFRjxoxRYmJizi05Odl2JCscR3r3Xem556QKFWynyYsRprz27jUb1CYnm72zQlHjxubICBMAAHCDkC6Yhg0bptTU1JzbxjBtxRYZKfXtK91/f/Cth/GOMFEwGePHS4cOmVGYBg1sp/EP7wjT8uVSdrbdLAAAAKcSZG+ffSs6OlrR0dG2Y6AArVpJixebEZVwl50tvfaaOR8wwHQRDEW1a5si/tAhMxWzVi3biQAAAPIX0gUTjLVrzfSnOnVyf7sfLMqUkZo2tZ0iOEyZIq1cKcXHSzfeaDuN/5QuLV19tRQdbaaLAgAABDMKpjAwaZI0aJB01VXSp5/aToP8eEeX+vWTypa1m8XfJkywnQAAAKBwXFUwpaena9WqVTkfr127VgsWLFD58uVVw7sYBicIxk1rjzVhgjRjhnT99VKXLrbT2LFxo/TVV+b8zjvtZgEAAEAuVzV9mDt3rlq1aqVWrVpJkoYMGaJWrVrp8ccft5wsuAXrprVekydLb74pzZ5tO4k9c+ZIUVGmYGzSxHaawMjIMNNFAQAAgpmrRpi6dOkih0UPRRasm9Z60VpcuuIKadOm3OI21C1aJLVsadrce/98AgAABCNXFUwonmCfksfmtUaFCsG3T5a/1K5tugLu3Gk2VQ6X7xsAALiPq6bkoXiCfUpeuI8wZWXZThB4ZcvmtpIP1Q16AQBAaKBgCgNuGWFavz4820xfe610xhnSzz/bThJY3hb3S5fazQEAAFAQpuSFgZdeMkVT9eq2k5yct2Dav19KTZWSkqzGCajsbLP/0t69Ulyc7TSB1bix9OOP0rJltpMAAADkj4IpDPTpYztBwcqUkSpWlHbtMuuYwqlgWrjQFEvx8VKbNrbTBBYjTAAAwA0omBAUZs0yUwbj420nCawpU8yxUyepdJj9bWzc2BwZYQIAAMEszN6ihZ/Nm6UFC0xjhZQU22nyV7eu7QR2TJ1qjueeazeHDU2bSjfeaI6OI3k8thMBAACciIIpxE2bZt6Unnee9NNPttPgWEePSjNmmPOuXe1msaFSJen9922nAAAAKBhd8kJcsHfI8/rjD+mOO6QxY2wnCZx580yji3LlpBYtbKcBAADAyVAwhTi3FEybNklvvCF99ZXtJIETHS3dcINpK14qTP8mHj0qrVhhbgAAAMEoTN+mhQ/vprWVKtnNcSrhuHlty5bShAnSuHG2k9jzr39JDRtKI0bYTgIAAHByFEwhzi0jTN69mLZtkzIy7GZB4NBaHAAABDsKphDnloKpYkUpNtacb9xoN0sgbNwoLV5susOFM2/BtHy52cQXAAAg2FAwhTi3FEweT3hNy3v7balZM+m222wnsatOHSkyUjp0KDwKZQAA4D4UTCHu6aelf/5TqlfPdpJT807L27DBbo5A8O6/dNZZdnPYVrq0VL++OWcDWwAAEIzYhynEXXON7QSF5x1h2rrVbg5/O3hQ+v13cx6OG9Yer1Ej6e+/zTqm7t1tpwEAAMiLgglBY/RoMxoWH287iX/NnCllZkrJyWZKWrhr3NgcGWECAADBiIIphO3cKc2eLVWvblpYB7uKFW0nCAzvdLxzzzVrt8Jd9+5mal6nTraTAAAAnIiCKYTNmSP16iWdcYY0b57tNPCaMsUcmY5ndOxobgAAAMGIpg8hzC0d8rz275fuuEO6+OLQbTGdlibNnWvOu3a1mwUAAACnxghTCPMWTJUq2c1RWDEx0ltvmWJpxw6pShXbiXwvJkb69ltp/nyzhgmGd1+q5s2l00+3nQYAACAXI0whbOdOc3TLCFNkpFStmjkP1b2YoqKkCy6QHnrIdpLgcsst0kUXSZMn204CAACQFwVTCHPbCJOUuxdTqBZMOLlGjcxx6VK7OQAAAI5HwRTC3LaGScrdiykUN6/ds0caOlT67jvbSYKPt2CitTgAAAg2FEwhzM0FUyiOME2bJj3/vHT//baTBB/2YgIAAMGKpg8h7LHHpLVrpWbNbCcpPO+UvFAcYTp2/yXk5R1hWrNGOnzYNMcAAAAIBhRMIeyyy2wnKDrvCNOePXZz+AP7L+WvShUpMVFKTZVWrZJSUmwnAgAAMJiSh6By3nnmTfMvv9hO4lvbtkl//y15PFLnzrbTBB+Ph8YPAAAgODHCFKJSU6UZM6SqVaU2bWynKbzoaHMLNdOmmWPLllL58jaTBK+hQ6WDB6V27WwnAQAAyEXBFKL+/lu65BKpVi2zjgl2MR3v1K680nYCAACAEzElL0S5sUOe1+jRUo8eoTUt7++/zbFrV7s5AAAAUDQUTCFq505zdGPBNGuW9P330uLFtpP4zi+/mLU5FEz5O3pU+ukn6dVXpexs22kAAAAMpuSFKO8IU6VKdnMURyhuXntsUwPk76KLpMxM6eKLc/8cAAAA2MQIU4hy85S8UN68FvkrXVqqX9+cs4EtAAAIFhRMIcrNU/JCafNax5HatpWuu07assV2muDnHYWjYAIAAMGCgilEMcIUHFavlubOlb74QkpKsp0m+DVubI7sxQQAAIIFa5hC1JAhUs+e0pln2k5SdN4Rpi1bzHqWyEi7eUrC2068XTupTBm7WdyAESYAABBsKJhCVI8e5uZGlStLUVGmwNi5U6pWzXai4ps61RzZf6lwvCNMFEwAACBYUDAh6JQqJe3eLZUtaztJyThO7ggT7cQLp2FDc9y+Xdq7VypXzm4eAAAACqYQdOiQ2c/mtNOks86ynaZ43F4sSWaz2h07pNhY9/4cAq1sWWnCBKlWLSkuznYaAAAACqaQtGGDdMklUmKitG+f7TThyzu6dM45UnS03SxucsMNthMAAADkokteCHLzprVekyaZTUxHjrSdpPjKlTMtxc8/33YSAAAAFBcjTCHIzS3FvXbulL77TsrKsp2k+G680dwcx3YSd9m82RTMpUpJt91mOw0AAAh3jDCFIDdvWusVSpvXejy2E7jLihXSHXdIzz5rOwkAAAAFU0gKhSl5x25e68YRmvXrpfR02yncybsX05o1UkaG3SwAAAAUTCEoFKbkVa9ujocOmRbjbjNggFnDNGGC7STuU6WKaViSnS2tXGk7DQAACHcUTCEoFAqmmBjzxlkyozVukpkpzZghHT0qNWliO437eDy5o0xsYAsAAGyjYApBt98ujR0rde5sO0nJeNcxua1gmjfPTMcrV05q0cJ2GneiYAIAAMGCLnkh6LzzzM3tatY0U7IOHLCdpGi8+y917Wo6vaHoGjc2x6VL7eYAAACgYELQmjBBioy0naLoji2YUDyMMAEAgGBBwRRisrLMHjannSadeaYUEWE7UfG5sVjKyJBmzjTn555rN4ubdewoTZuWO9IEAABgCwVTiNm9W7rsMnOemWk1SliaNUs6fFiqXJk3+yVRvrz71+ABAIDQQMEUYrwd8ipUkEq7/Ke7ZYt0yy3S/v3Sr7/aTlM4DRpIr7wiHTnChrUAAAChwOVvqXG8nTvN0c2b1nqVKSN9/705P3jQfBzsqlaVBg60nSI0TJlifv4dO0q9etlOAwAAwhU9vEJMKOzB5JWYKMXHm/ONG+1mQeD9/LP03HPSt9/aTgIAAMIZBVOI8Y4whULB5PGY1uKSO/ZiWrhQevNNac0a20lCg7dTHq3FAQCATRRMISaURpik3M1rN2ywm6MwPvrIbBr8xBO2k4QGb9MMWosDAACbKJhCjLdgCoU1TJK7RpjYf8m3GjY0x+3bpb177WYBAADhi6YPIebGG6UmTaSzzrKdxDfcUjClpkpz55pzCibfiI+XqleXNm0yo0zt2tlOBAAAwhEFU4g55xxzCxU1akhJScG/ie0vv0jZ2VK9ernTCFFyjRqZgmnpUgomAABgB1PyENSuu85Mx3r7bdtJCsZ0PP/wrmNaudJuDgAAEL4omELMN99Iv/9uNk4NBW7Z/HXqVHM891y7OULNgw+aEabRo20nAQAA4YopeSHkyBHp4ovN+a5dUoUKdvOEi7Q0afFic96li9UoIef0020nAAAA4Y4RphCya5c5RkRI5crZzeJLt9wiNW0q/fGH7SQnl5Bg9r/64QepShXbaQAAAOBLFEwhxLtpbcWKUqkQ+smuXi39/bc5BqukJOn8822nCE1jxkhXXimtWGE7CQAACEch9LYaobZprZebNq+F7331lfTFF9Jff9lOAgAAwhEFUwgJ1YIpmPdi2rZN6tBBevxxyXFspwlNjRqZ47JldnMAAIDwRMEUQkK1YPKOMAVjwTR1qvTbb9KkSe7p6Oc23oJp6VK7OQAAQHiiYAoh3jVMlSrZzeFr3hGmYJySx/5L/ufdi4kRJgAAYANtxUPIZZdJVatKzZrZTuJbx07Jc5zgGslh/yX/O3ZKXnZ2aDU0AQAAwa9Ybz2eeOIJHTx48IT7Dx06pCeeeKLEoVA8Z54p3X136O0FlJxsutDVri0dOmQ7Ta71603nvogIqWNH22lCV506UunS0sGDZhNbAACAQCpWwTRy5Eilp6efcP/Bgwc1cuTIEocCjlWmjLR3r7RwoTkPFt7RpTZtzF5M8I/ISKl+fSkmRtq40XYaAAAQboo1Jc9xHHlOMi9q4cKFKl++fIlDoXgmT5bKlpXOOEOKjbWdJvQxHS9wpk+XKlRgOh4AAAi8IhVM5cqVk8fjkcfjUYMGDfIUTVlZWUpPT9cdd9zh85AonKuuktLTpZUrpXr1bKcJfWXLSuXK0fAhEEKtkQkAAHAPj+MUfveY8ePHy3Ec3XzzzRo7dqwSExNzPhcVFaVatWqpXbt2fgnqC2lpaUpMTFRqaqoSQmwO1aFDudPV9u2TjvnRhIQ335RefNEUhcE06zM72zSiiIiwnQQAAABFUdjaoEgjTP369ZMk1a5dWx06dFDp0jTZCxbeluJRUaG5nubgQenvv4NvLx6miAXG1q3SvfeaP+c//2w7DQAACCfFersXHx+vpce8c/3qq6902WWX6eGHH9aRI0d8Fg6Fd+ymtcHUdttXgm3z2p07zcgSAiMuTvr4Y7Pv1d69ttMAAIBwUqyC6fbbb9eKFSskSWvWrNG1116rMmXK6NNPP9UDDzzg04AoHG/BFKprPYJp81rHkVJSTKb//2sAP0tIkE4/3ZwvX243CwAACC/FKphWrFihli1bSpI+/fRTde7cWR988IHeffddff75577Mh0I6doQpFHkLpm3bpMOH7Wb5+2/zeu/alZsL/ufdwDbYpmUCAIDQVqyCyXEcZWdnS5J++uknXXTRRZKk5ORk7dq1y3fpUGjeNUyhOsJUoUJuq3Tbm5dOmWKO55wjRUfbzRJOGjc2x2XL7OYAAADhpVgFU5s2bfTUU0/p/fff1/Tp09WzZ09J0tq1a1W5cmWfBkThnH++9NJL0g032E7iHx5P7miO7XVM3v2XaCceWIwwAQAAG4rV5m7s2LHq3bu3vvzySz3yyCOq9/+b/nz22Wdq3769TwOicFq2NLdQlpJiugD+/+CmFVlZ0rRp5pwNawOLESYAAGBDkfZhOpXDhw8rIiJCkZGRvrqkT4XyPkwIjPnzpdatpfh4ac8eic76gbNli1Srlhlp+vNP9r4CAAAl45d9mI43b968nPbiTZo00RlnnFGSy6EEpk41oy8tWkhly9pOE7q80/E6d6ZYCrSqVc1+XLzuAAAgkIq1hmnHjh3q2rWr2rZtq0GDBmnQoEFq06aNzjvvPO30dh/wk1dffVW1atVSTEyMzjrrLP3xxx9+fT636NfPNCH4+2/bSUJbhw7SPfdI111nO0n48XgolgAAQOAVq2C6++67lZ6eriVLlmjPnj3as2ePFi9erLS0NA0aNMjXGXN8/PHHGjJkiIYPH6758+erRYsW6t69u3Z4e2qHKcfJ7ZIXqm3FJWnxYrOOyeZA5tlnS2PHSr1728sAAACAwCnWGqbExET99NNPatu2bZ77//jjD11wwQXat2+fr/LlcdZZZ6lt27Z65ZVXJEnZ2dlKTk7W3XffrYceeuiUXx+qa5j27zcbe0pSeroUF2c3j7+sWyfVrm2mHh46JJUqVrkPN/v6a2nkSLOO7I03bKcBAABu5tc1TNnZ2Sdt7BAZGZmzP5OvHTlyRPPmzdOwYcNy7itVqpS6deum33///aRfk5GRoYyMjJyP09LS/JLNNu8AW5kyoVssSdLpp5si6cgRaft2s6YlkGbMMF3y2rWTYmIC+9wwsrKkefPMqCoAAEAgFOt39Oeee67uuecebdmyJee+zZs3695779V5553ns3DH2rVrl7Kysk7Y56ly5cratm3bSb9mzJgxSkxMzLklJyf7JZtt4TAdT5IiI6Vq1cz5hg2Bf/4nnzStxP/978A/N4xjW4vbbC8PAADCR7EKpldeeUVpaWmqVauW6tatq7p166p27dpKS0vTyy+/7OuMxTZs2DClpqbm3DZu3Gg7kl94R5hCvWCS7G1em5Eh/fqrOWf/JXvq1DGNHw4elDZvtp3GfxyHghAAgGBRrCl5ycnJmj9/vn766Sct+/9dJBs3bqxu3br5NNyxKlasqIiICG3fvj3P/du3b1eVKlVO+jXR0dGKjo72W6Zg4S2YKlWymyMQatSQZs4M/AjTrFnS4cNS5cq5oxwIvMhIqX59aelScwvRQWP17i398IO0aFHgp54CAIC8ijTCNGXKFDVp0kRpaWnyeDw6//zzdffdd+vuu+9W27Zt1bRpU/3yyy9+CRoVFaXWrVvr559/zrkvOztbP//8s9q1a+eX53SLDh2kV16Rbr3VdhL/szXC5N1/qWtX094a9jRqZI7//7uakPPjj9KHH0q7d0tTpthOAwAAijTCNHbsWN12220n7SKRmJio22+/Xf/617/UsWNHnwU81pAhQ9SvXz+1adNGZ555psaOHasDBw7opptu8svzuUXjxuEz6tGokdS8uRnpCSTvG1em49kXygVTdrZ0bMPPRYvsZQEAAEaRCqaFCxfqmWeeyffzF1xwgZ5//vkSh8rPtddeq507d+rxxx/Xtm3b1LJlS33//fcnNIJA6OrXz9wC6eBBMyVPomAKBikpUr16UvnytpP43l9/mf3GvI49BwAAdhRpH6aYmBgtXrxY9erVO+nnV61apWbNmunQoUM+C+hLoboPk7cZQbNmUmKi3Syh6McfpQsuMOun1q1jSh78a9066bXXpOeek5o2pWgCAMBfClsbFGkN0+mnn67FBfzv/ddff6kqK5QD7q67pI4dc0dBwoHjBG4vnnPPlebPl15/nWIJ/lerlvTEE6axCVPyAACwr0gF00UXXaTHHntMhw8fPuFzhw4d0vDhw3XxxRf7LBwKJ5y65EmmOExIkJYsCczzRURIrVpJPXoE5vlQOI5jNrINBfv3S3Pn5n4cE2M6AFKgAwBgX5EKpkcffVR79uxRgwYN9Oyzz+qrr77SV199pWeeeUYNGzbUnj179Mgjj/grK07CccJn41qv/ful9HQ7m9ciONxzj1nD9P77tpP4xvPPS23bSg88YDsJAAA4XpGaPlSuXFm//fab7rzzTg0bNkze5U8ej0fdu3fXq6++SgOGANu3Tzp61JyHywhTzZrSwoWBaS0+dao0frx0xRXSJZf4//lQONnZ5s/+0qW2k5Tctm3SP/9pzs88M/f+yZOlN9+U2rSRhg2zkw0AABRj49qaNWvq22+/1d69e7Vq1So5jqP69eurXLly/siHU/BOx0tMlMJgj15JpvmCFJgRpkmTTMEUHU3BFExCqbX4k09KBw6YYunKK3Pv37JF+uILUxhSMAEAYE+RCyavcuXKqW3btr7MgmIIt/VLUmA3r2X/peDk3XfM7QXTypVmFEmSnnkm75qlZs3MkS55AADYVaQ1TAg+4bZ+SQrcCNPu3dKCBea8Sxf/PheKxjvCtHq1dOSI3Swl8eijZkrtRRed+GescWNTQO3YkfuLEQAAEHgUTC7XooX0yiumtXi4CNQI0/Tp5ti0qcTSvOBStaoUH2+65K1aZTtN8cyZI33yiSmKxow58fNxcVKdOuY8UB0hAQDAiSiYXK5uXWngQOn6620nCZxataTmzaXWrf27F5N3Ol7Xrv57DhSPx5M7yuTWxg87dkhVqkh9+pg/zyeTkmKOTMsDAMCeYq9hAmypXNl0yfM31i8Ft86dTWvx+HjbSYqnZ08zOnboUP6PadZM+uorCiYAAGyiYHK52bPNGo6mTc2bR/jGoUNS6dJSqVLmjTmCz3PP2U5QcnFx5paflBSzia2b12kBAOB2TMlzuYcekjp1kn74wXaSwHOc3D2ofC02VvrrL9NUg0IUvvT119IHH5i9pE7l8svNJs3vvOP/XAAA4OQomFwuHNuKS6a7WEKC9PTT/n0eiqXgt2ePf9ey+VJGhjRokNS7t/TWW6d+fFSUFBHh/1wAACB/FEwuF45txSUpMtL85t1frcUzMvxzXfhOdrZUvbpUoYK0aZPtNIXz+uvSunWmy1+fPrbTAACAwqBgcrGsLGnXLnMebiNM/mwtvmGDlJQkXXhh4aZNwY5SpXIbPrhhA9vUVOnJJ835yJFSmTKF+7pXXzXbB4wd67doAACgABRMLrZ7d+5UpIoV7WYJNH9uXjt1qnT4sHmDW4q/IUHNTa3Fn3/e/J1t2FC66abCf11qqllPN3++/7IBAID88XbQxbzrlypUMB3dwsmxI0y+Xr/C/kvu0bixOQb7CNPWrdK//mXOx4wp2t9X715Mixb5PhcAADg1CiYX865fCrfpeJJZuyKZ9t/eaYm+4Djsv+QmbhlhGjlSOnhQatdOuuyyon2tt2BautR/XSEBAED+wmxcIrTUq2fWN8TG2k4SeNHRZuH81q1mWp6visZVq0wDgagoqX1731wT/uOWEabrrjNT6p55RvJ4iva1tWqZ9U4HD0qrV5spfQAAIHAomFwsOVkaMMB2Cnu6dZP27vVt2+WpU83x7LMLvygf9niLh23bpH37TLOOYNSli9lkuqjFkmTW0TVtKs2ZIy1eTMEEAECgUTDBtd57z/fXZDqeuyQkSFdfbdrqB2MreMfJLZKKUyx5paSYgmnRIunKK32TDQAAFA4Fk4v9+ae0f79ZxxFu+zD5y7nnSmlp0gUX2E6CwvrkE9sJTs5xpF69pNatpfvvz22BXhwtW5rphwkJPosHAAAKyeM4vu4xFrzS0tKUmJio1NRUJYTAO48rrpAmTjTrmMJ1ap7jmBbg4biOC8Ht22+lnj3NeruVK80UWgAAEDwKWxvQJc/FwrlLnmTWGyUmSh072k4C2/bvNw07gkVWlvTQQ+Z80CCKJQAA3IyCycW8+zCF63S88uXNG2VfbV47bZrpkAd3mTHDTFXr2dN2klwTJpj1RklJuYWTL2RnS5mZvrseAAA4NQomFwv3gsm7ee3OnablcklkZ5spjsnJpv0z3KNuXXNcvVo6csRuFslMEX3sMXM+bJgp7H3hzjtNYfjxx765HgAAKBwKJpc6csS0UZbCt2BKTMxdSF/SUaaFC02L8vh4qXnzkmdD4FSrZn5uWVnBMS3vtdfMn8fq1aW77/bddUuVkg4cMK3FAQBA4FAwudSuXeYYESGVK2c3iy0eT+4oU0kLJm878U6dpNL0jnQVj8d0ipTsb2CbmSk9/7w5f+IJ3zYjSUkxx0WLfHdNAABwahRMLuVt+FCxovnNc7jyFkzr15fsOuy/5G7egmnpUrs5IiOlmTOlBx6Q+vb17bW9BRMjTAAABBa/S3epKlXM1J/waQp/cjVqmGNJRpgyM03jAImCya0aNzZH2yNMklS7tvTMM76/rrdg2rDB7BUWAjsjAADgChRMLlW5slkEHu7OPFPauFGqX7/415g3T0pPN4vzWb/kTsEwJW/jRv+2Dy9XTjr9dGnzZmnJEqldO/89FwAAyBXGk7kQCvr3l77+umTTn7zT8bp0Ce/pjW7WsqX0j39It9xi5/mXLpXq1JGuu86/bb+ZlgcAQOAxwuRSixdLu3dLDRpIVavaTuNut91mWlNXrmw7CYqrdm3pjTfsPf/DD0tHj0oZGWYdk7+ce64UFcXfeQAAAsnjOOGzCiYtLU2JiYlKTU1VgssXANx6q/T229KTT0qPPmo7jV2OI6WmmjUdjBAh0H77TerQwfzZW7w4dz0VAAAIboWtDXh76VLeLnnhugeTV3a2VKmSWd+xZYvtNLDp0CGzn9bKlYF7TseRHnzQnN98M8USAAChiILJpXbsMMdwL5hKlSrZ5rXvvy+NHi0tX+7bXAi8J54wa5nGjg3cc06aJP36qxQTI40YEZjndBxp61bp8OHAPB8AAOGOgsmlvAVTpUp2cwSDkuzF9Oab0iOP5LYVh3sFei+mrCzpoYfM+eDBpoNdIJx1llStmpkKCAAA/I+CyaUYYcpV3ILpwAFp9mxzzv5L7hfovZhWrTKNV8qVy52WFwjewoxOeQAABAYFkwsdOmT2DZIomKTib147c6ZpAZ2cbFpCw90aNjTHrVtNE5BAPN+qVdI330hJSf5/Pi9aiwMAEFgUTC7kbfgQGWk6w4W74o4wTZ1qjueeK3k8vs2EwEtMNFPVpMCNMpUtG/gNZCmYAAAILAomF0pIkMaNk8aM4Y2+VPwRJu+GtUzHCx2BWMe0d6/00UemQ6MNxxZM4bMpBAAA9lAwuVBSknTHHdJ999lOEhzq15cuvli66KLCf01qqjR3rjnv2tU/uRB4gVjHNGaMdP31Ur9+/nuOgjRoYEaX9+8vXmdIAABQNKVtBwBKqnZt6euvi/Y1y5ZJsbFS1apmDRNCw+WXmxHHzp39c/2NG6WXXjLn11/vn+c4lchIM5K2aJEZZfJOSQUAAP5BweRCy5ebhe316knVq9tO405nnWWmVm3aZDsJfOm888zNX4YPlzIyTEHWo4f/nudUbrjBdMqk2AcAwP88jhM+s+DT0tKUmJio1NRUJbi4W8LQodLzz0tDhkj//KftNMHBcaR9+6SICBphwD8WL5ZatDBrl2bNMkU3AABwr8LWBqxhciFvlzw2rc11441S+fLS+PGnfmz4/IogPC1fLn3xhbR9u2+v+/DDpli68kqKJQAAwgkFkwuxae2JvK9FYVqLf/GF2UNn9Gj/ZoIdffqYombmTN9d85dfzDq5iAhp1CjfXbck9u41uY4etZ0EAIDQxhomF/KOMFEw5fIufC9M17ApU6QVK8w6MISeRo2kOXN82ykvOlpq3Vpq0yZ3g1ybsrPN+qUDB0wLdW87dQAA4HsUTC7ECNOJirJ57bEb1iL0eFuL+3IvpjPPlP74Qzp82HfXLIlSpaQmTUxhuHgxBRMAAP7ElDyXcZzcgok1TLkKu3nt1q3mjbTH47/W07DLWzz4ei+mUqWkMmV8e82SaNbMHBcvtpsDAIBQR8HkMgcO5P6WmxGmXN4Rpm3bCh4FmDbNHFu2NE0iEHqOLZhK2uDj/felkSPNJrHBJiXFHCmYAADwL6bkuUypUtLrr0u7dklxcbbTBI8KFcxGtIcOmb2V6tU7+eOmTDFHpuOFrnr1pNKlpfR0afPm4u9VdvCg9NBD0pYt5s/XXXf5NmdJUTABABAYFEwuU6aMdPvttlMEH49H6tvXdDGLisr/cd6CqWvXwORC4EVGSnXrmvbiy5YVv2B66SVTLNWsKd12m28z+oK3YFq50oyqxsTYzQMAQKiiYELIeP31gj9/5IjUrZs0fbrUsWNgMsGOJ580o7EtWhTv63fvlp5+2pw/9ZTpkhdsqlQxI1+7d5vCsGVL24kAAAhNFEwus2aN6QRXu7ZUq5btNO4SFSW98YbtFAiEq68u2dePHi2lppqC64YbfJPJ1zwes5luTIwpngAAgH/Q9MFlPv7YrL954gnbSYKP45jNPDdtsp0EbrZ+vfTKK+b86afNSFWwGjJEGjCAggkAAH8K4rcCOBnvprW0FD/Rhx+aznf9+p34Occx++gcPRr4XAi8w4elr7+WXn656F87YoSZvtm1q9S9u8+jAQAAl2FKnsuwaW3+vIv7T7Z57apV0llnSRUrmoX8kZGBzYbAysiQLrnEnPftKyUmFv5rH3vMFEyDB5tpb8EsM1NasEBavVq67jrbaQAACE2MMLkMBVP+vJvXbtwoZWfn/Zy3O16TJhRL4SAxUapWzZwvX160r61TR5owQWrb1ve5fC09XTrzTOn666W0NNtpAAAITRRMLuMtmJiSd6LTTzfrTY4ckbZvz/u5qVPNkf2Xwod3A9ulSwv3+IwM/2Xxl3LlckdW2Y8JAAD/oGByGe8aJkaYThQZmTuqsGFD7v2Ok1swsf9S+PAWTMuWnfqxjiN16WI64m3Z4tdYPscGtgAA+BcFk4s4DlPyTqVmTXM8dh3T33+b1y021qxjQnho3NgcCzPC9MUX0qxZ0v/+F9xd8U6GggkAAP+i6YOLZGWZdsc7dzIlLz81akgzZ+YtmLzrl845Jzg3IIV/FHaEKTPT7GckSffd574W3RRMAAD4FwWTi5QuLd1+u+0Uwe3CC826jlatcu/zFkxMxwsv3oJp1Sqzri0q6uSP+89/pBUrzC8h7rsvcPl8xVswLVpkRqGDvbMfAABu43Ecx7EdIlDS0tKUmJio1NRUJSQk2I6DAJkzR5o8Wbr8cqlpU9tpECiOYzZ6btRIatZMiog48TEHDkj16knbtkkvvSTdfXfgc5bUwYNS2bLm+922Tapc2XYiAADcobC1ASNMLrJpk/lNeM2aUt26ttO4R9u27mgRDd/yeE69N9HYsabIqF3bvaO3ZcpIb7xh/l3g90AAAPiey5Y3h7dJk6TzznPntKFAcRxp3z4zPQkoSFaWNH68OR81Kv8pe25w223SBReYxiYAAMC3GGFyEVqKn1p6ulnDJEmpqdJ775kpSt2789v3cLRqlfT111JSknTTTXk/FxEhzZ9v/oxce62VeAAAwAUYYXIRWoqfWnx8bsG0Zo00bJh0zTXmHOHnr7+kIUOk1147+efLlpUGDHBfK/Hj7d0rffSRNG6c7SQAAIQel79NCC/egomW4gWrUcMcP//cjDiVLy81b243E+zw7sW0bJmZruk1a5aUnW0nkz9s3Spdf730wAN5v08AAFByFEwuwghT4Xg3r333XXPs0sX9Iwgonrp1zdS79HRp82Zz34IFUvv20tlnS4cPW43nM/XrS5GR5vvcsMF2GgAAQgtvI13Eu4aJEaaCeUeYNm0yx3PPtZcFdkVFmbbhUu4GtsOGmVGYunWlmBh72XwpMjJ33ykangAA4FsUTC7CCFPheEeYvCiYwpu3kFi61Gxi/P33psAYNcpuLl/zbmC7eLHdHAAAhBoKJhcZM0Z66qncERSc3LEFU5UquW+YEZ6OLZgefNCc33GHVKeOvUz+0KyZOVIwAQDgW7QVd5FbbrGdwB2ObfDQtavZwBThy9v4wdtBrmxZ6dFH7eXxF0aYAADwDwomhJyGDc0alY0bQ2dRP4rvooukmTOlK66Qtm+Xhg4NzWmt3oJp6VLp6FGpNP+6AwDgE/yX6hLbt0tLlkjVq0sNGthO4w7JybYTIBhUqmQK59NPN4X0kCG2E/lHzZrSV1+ZwikiwnYaAABCBwWTS0yfLl17rdSxozRjhu00gLskJ0tz5khr15opeaGoVCnpkktspwAAIPTQ9MEl6JAHlEypUqaVOAAAQFEwwuQSFEwATmXVKumjj6QyZUJ36iEAAIHGCJNLeDetpWACkJ9166THHpPeeMN2EgAAQgcFk0t4R5gqVbKbA0Dw8nbKW7VKOnTIbhYAAEIFBZNLMCUPwKlUrixVqCBlZ0vLltlOAwBAaKBgcgmm5AE4FY8nd5Rp0SK7WQAACBU0fXCJRx+VNmxgDyYABUtJMdsQLF5sOwkAAKHBNQXTqFGj9M0332jBggWKiorSvn37bEcKqBtvtJ0AgBt4R5gomAAA8A3XTMk7cuSIrr76at155522owBA0GrWzByXL7ebAwCAUOGaEaaRI0dKkt599127QSzYu1eaN0+qVk1q0sR2GgDB7IwzpCVLpPr1bScBACA0uKZgKo6MjAxlZGTkfJyWlmYxTfHNmyedf76ZasNCbgAFiY3lFysAAPiSa6bkFceYMWOUmJiYc0tOTrYdqVhoKQ4AAADYYbVgeuihh+TxeAq8LSvBZiLDhg1Tampqzm3jxo0+TB84FEwAimL6dKl/f+n5520nAQDA/axOybvvvvvUv3//Ah9Tp06dYl8/Ojpa0dHRxf76YEHBBKAo1q2Txo+XunSR7r/fdhoAANzNasFUqVIlVapUyWYEV/BuWstLBaAwjt281nHMhrYAAKB4XNP0YcOGDdqzZ482bNigrKwsLViwQJJUr149lS1b1m44P2OECUBRNGliiqTdu82/H5Ur204EAIB7uaZgevzxxzV+/Picj1u1aiVJmjp1qrp06WIpVWBQMAEoithYqV49aeVKs4EtBRMAAMXnmi557777rhzHOeEW6sWSJA0ZIo0eLTVvbjsJALfwTstbvNhuDgAA3M41I0zh7OqrbScA4DYpKdLEiRRMAACUlGtGmAAAhdesmVnHtG+f7SQAALgbI0xBLj1dmjVLqlIld4oNAJxKr17m348yZWwnAQDA3SiYgtzy5dL550unny5t2mQ7DQC3iImxnQAAgNDAlLwgR4c8AAAAwB4KpiDnLZjYtBZAUf3nP9I550gvv2w7CQAA7kXBFOQYYQJQXNu3SzNnSrNn204CAIB7UTAFuZ07zZGCCUBRNWtmjosW2c0BAICbUTAFOabkASgub2fNZcukzEy7WQAAcCsKpiDHlDwAxVWjhlS2rHTkiLRqle00AAC4EwVTkLvjDmnMGOmss2wnAeA2pUpJTZua88WL7WYBAMCtKJiC3CWXSA89lPumBwCKwjstj3VMAAAUDwUTAISwlBQpOVmKirKdBAAAd/I4juPYDhEoaWlpSkxMVGpqqhISEmzHOaWMDGnGDNPwoUULyeOxnQiA2zgO/3YAAHAyha0NSgcwE4po82bpgguk2Fjp4EHbaQC4EcUSAAAlw5S8IEaHPAC+lJ1tOwEAAO5DwRTEKJgA+ML990tVqkj//a/tJAAAuA8FUxDbudMc2bQWQElkZEjbt9NaHACA4qBgCmKMMAHwBVqLAwBQfBRMQcw7wkTBBKAkvAUTI0wAABQdBVMQY4QJgC94N77etEnat89qFAAAXIeCKYj16SONGSN16mQ7CQA3S0qSqlc350uWWI0CAIDrsA9TEOve3dwAoKRSUswI0+LFUocOttMAAOAeFEwAEAY6dJAOH5bKl7edBAAAd/E4juPYDhEoaWlpSkxMVGpqqhISEmzHKZDjSD/+aNYvNWsmRUTYTgQAAACEjsLWBowwBanU1NzpeIcOUTABAAAANtD0IUh5O+QlJEgxMXazAAgd+/ebjWwBAEDhUDAFKW/BVKmS3RwAQsd555lfwvzyi+0kAAC4BwVTkGIPJgC+lpRkjmxgCwBA4VEwBamdO82RggmAr6SkmCMFEwAAhUfBFKSYkgfA1yiYAAAoOgqmIMWUPAC+dmzBlJ1tNwsAAG5BW/EgdeWVUnKydPbZtpMACBX16klRUdKBA9L69VLt2rYTAQAQ/CiYglSXLuYGAL4SGSk1aiT99ZcZZaJgAgDg1CiYACCMXHmldNZZUpUqtpMAAOAOFExBasoU0wI4JcVMoQEAX3j8cdsJAABwFwqmIJSVJZ1/vlmUvWWLVLWq7UQAAABAeKJLXhDasye3g1XFinazAAg9hw9LCxZIR4/aTgIAQPCjYApC3k1ry5c3i7QBwFccx4xat2olrVhhOw0AAMGPgikIsWktAH/xeKSGDc05G9gCAHBqFExBiE1rAfjTsRvYAgCAglEwBSHvlDwKJgD+QMEEAEDhUTAFIUaYAPgTBRMAAIVHW/EgdOGFUlyc1KKF7SQAQlGzZua4apV06JAUG2s3DwAAwYyCKQi1a2duAOAPp51mtizYtUtaulQ64wzbiQAACF4UTAAQZjweafBgqXRpunECAHAqFExB6JdfzJS8Jk2kmBjbaQCEokcesZ0AAAB3oOlDELrsMql1a2nNGttJAAAAgPBGwRRkMjOlPXvMOV3yAPhLdra0fLn09de2kwAAENyYkhdkdu0yx1KlpPLl7WYBELr275caNTLne/dKSUlW4wAAELQYYQoy3k1rK1Y0RRMA+ENiopScbM6XLLGbBQCAYMZb8iDDprUAAsW7ge2iRXZzAAAQzCiYggwFE4BA8W5gu3ix3RwAAAQzCqYgQ8EEIFC8I0wUTAAA5I+mD0GmUyfp2WelBg1sJwEQ6o4tmBzHbGgLAADyomAKMmecYW4A4G+NGpnmMrt3S9u2SVWr2k4EAEDwoWACgDAVGyu98IJUvboUH287DQAAwYmCKcjMmiVFRprf/MbF2U4DINQNGmQ7AQAAwY2mD0HmxhulNm2kBQtsJwEAAABAwRRk6JIHIJD275cmTZLefdd2EgAAghNT8oLI4cPmzYskVapkNwuA8LB5s9Srl5kC3LevaQIBAABy8V9jENm50xwjI6XERLtZAISHevWkqCjpwAFp/XrbaQAACD4UTEHEOx2vUiX2QwEQGKVLS40bm/NFi+xmAQAgGFEwBRHWLwGw4dgNbAEAQF4UTEGEggmADRRMAADkj6YPQaRNG+m556TTT7edBEA4oWACACB/FExBpGlTcwOAQPIWTMuWSZmZpvEMAAAwKJgAIMzVqCH997+mcIqIsJ0GAIDgQsEURObMMd3xGjaU4uNtpwEQLkqVknr3tp0CAIDgRNOHIDJggNS2rTRtmu0kAAAAACRGmIIKXfIA2LJhgzRxolm/NGCA7TQAAAQPRpiChONIO3eacwomAIG2apU0eLD0wgu2kwAAEFwomILEgQPSoUPmvFIlu1kAhB9vp7zVq6WDB+1mAQAgmFAwBQnvdLzYWCkuzm4WAOHntNPML2scR1q61HYaAACCBwVTkDh2Op7HYzcLgPDEBrYAAJyIgilI0PABgG3egmnRIrs5AAAIJnTJCxKNG0vPPy+VL287CYBwxQgTAAAnomAKEvXqSffdZzsFgHBGwQQAwImYkgcAkCS1aiXNmkXTBwAAjkXBFCQWLpTmzJH27bOdBEC4io2VzjpLio+3ncR/srOl++83+04BAFAYFExB4oEHpDPPlP73P9tJACB0vfuu9M9/Su3aSYcP204DAHADCqYg4e2Sx6a1AGyaNUu66y7pxRdtJ/G91FRp2DBz/tBDUkyMue/cc6Xff7ebDQAQvCiYggRtxQEEg5UrpVdflb74wnYS33vySfNvbcOG0t13m/uGD5emTpW6dJH+8x+r8QAAQYqCKQg4Tt6NawHAlmM75TmO3Sy+tGxZ7qjZCy9IUVHm/KmnpCuukI4ckW65xRRSmZn2cgIAgg8FUxBITc39D5opeQBsatRIKlVK2rNH2rbNdhrfcBzp3nulo0elnj2lHj1yP1e2rPTpp9ITT5iPX3lFuuCC3F9iAQDgioJp3bp1uuWWW1S7dm3Fxsaqbt26Gj58uI4cOWI7mk94p+PFx5s59QBgS2ys2RdOCp39mCZPlr7/XoqMNKNLxytVSnrsMenLL00BNW2a1LattGRJoJMCAIKRKzauXbZsmbKzs/XGG2+oXr16Wrx4sW677TYdOHBAzz//vO14Jcb6JQDBJCVFWrHCFEznn287Tcl16WKm3h09KtWvn//jLr3UNL247DIpI0OqWDFQCQEAwcwVBdOFF16oCy+8MOfjOnXqaPny5Ro3blxIFEw1a5o2t9HRtpMAgNSsmWn6ECojTDEx0iOPFO6xTZtKf/whbd0qVa6ce7/jSB6Pf/IBAIKbKwqmk0lNTVX58uULfExGRoYyMjJyPk5LS/N3rGJJTpaGDLGdAgAMb+OHLVvs5iiptDSpTBmpdBH/pytXzty83ntP+vhjacIEKSnJpxEBAC7gijVMx1u1apVefvll3X777QU+bsyYMUpMTMy5JScnByghALhXjx6m6cF339lOUjJ33y21bi3NmVP8a6SlSYMHS99+K511lum2BwAIL1YLpoceekgej6fA27Lj/nfavHmzLrzwQl199dW67bbbCrz+sGHDlJqamnPbuHGjP7+dYluyxEwB2b3bdhIAkOLi3L9+Z/ZsMzL0118la4+ekCD99JOZCbBihSmaJk3yXU4AQPDzOI69nTZ27typ3aeoEurUqaOo/98wY8uWLerSpYvOPvtsvfvuuypVqmj1XlpamhITE5WamqqEhIRi5/a1664z0z3GjpXuucd2GgBwt+xs6eyzzcjSTTf5ZkPaHTukq66SfvnFrGV66ilp2DDWNQGAmxW2NrC6hqlSpUqqVMiNhzZv3qyuXbuqdevWeuedd4pcLAUzb5c89mACECw+/NCM0PTqJQ0YYDtN0Ywfb4ql+Hhp9GjfXPO008xI0+DB0rhxponEwoXmdQqh/44AACfhin/mN2/erC5duqhGjRp6/vnntXPnTm3btk3bQmRXRdqKAwg269ebvYt+/dV2kqJJSzMjP5L0+ONSlSq+u3ZUlPTaa9Kbb5o9nRo2pFgCgHDgii55P/74o1atWqVVq1apevXqeT5ncUahz3h3lKdgAhAsmjUzR7e1Fn/ySWn7dqlBA2nQIP88x223mSl/TZvm3peVJUVE+Of5AAB2ueJ3Y/3795fjOCe9uV1WlrRrlzlnSh6AYOFtLb5smZSZaTdLYWVlSfPmmfOxY82IkL80a5Y7unTokHTOOdJLL5WswQQAIDi5omAKZXv2mAXKkvu7UgEIHTVqSGXLmmJp5UrbaQonIkL6+Wdz69EjcM87YYI0a5Zp2nPzzdLhw4F7bgCA/1EwWeadjleunJkTDwDBwOPJHWVy07Q8j0c699zAPuctt0gvvGBGnN59V+rc2f2b/gIAclEwWVahgvTPf0oPP2w7CQDk5ZZ1TEeOSKNGmYYPNng8pnve5Mnml19//GE2zP39dzt5AAC+RcFkWeXK0pAh0v33204CAHmlpEhJSdLRo7aTFOzFF6VHHzUjOzbXEHXrZtqZN20qbdsmdekiffGFvTwAAN+wunFtoAXrxrUAEIwyM6XSpYN7c9atW01HvPR0Mx2uXz/biaT9+02OGTNMAVW7tu1EAICTccXGtZBWrJD27pXq1KFLHoDg4oZ1lcOGmWLpzDOlPn1spzHi46XPPpPWrs1bLGVkSNHR9nIBAIqHKXmWvfCC2c/jlVdsJwEAd5k9Wxo/3py//HJwbSJbqpRUt27ux998IzVuLC1YYC0SAKCYgui/l/C0Y4c5smktgGA0fLhUv7703nu2k+SVnZ27MW3//maEKVg5jjRihBlxat9e+vhj24kAAEVBwWSZt6040/EABKN9+6RVq6S//rKdJK/33zfd6OLjpTFjbKcpmMcj/fCD1L272eT2uutMZ9SsLNvJAACFQcFkGSNMAIJZsO7FdP75Ut++ZgSsShXbaU6tXDkzLW/oUPPxmDHSJZeYghQAENxo+mCZd4SJgglAMArWgqlaNbN+yU19XiMipGeflVq2NJvdfvutdNZZZi1WUpLtdACA/DDCZFFmprRnjzmnYAIQjJo2NcfNm01HT9sOH877cTC3PM/PDTdIM2dKycnSeee5s1g6elRatkz69FPp8celK64wa91+/DH3MUeOSKmp9jICgK8wwmTRrl3mWKqUVL683SwAcDIJCVKNGtKGDWaUqWNHu3muvNK05h471uRyqzPOkObNkxITc+87cEAqUya4ikDHMcWRt8X8L7+YZhtLl5o26cdbuNBMl5Ske++Vfv5Z+vJLqVGjgEUGAJ+jYLIoNta0FU9PD652uABwrJSU4CiYvv3W3CIjpWeesZfDV45t9nP0qHTZZWat0zvvSHFxgc+zZ4/5GS9aZG6LF5vbqFHSwIHmMWXK5LZGL1PG/NlISZGaNTPHVq3M53bvlv73P2nTJtPB8L//NWu2AMCNKJgsSkqSBg+2nQIACta2rWlQU7asvQxHjuT+ezl4sJn+FUrmzJGmTzdTtZcvN6Myx25660uHDpmbd2bD4sWmg9+WLSd//KJFuedNm5pszZpJtWrl/8u+ChWkuXOla66RZsyQLr3UNOh4/HF+QYjgt2KF9N130j332E6CYOFxHDctmS2ZtLQ0JSYmKjU1VQkJCbbjAAAK6bnnpAceMB3xli83UwVDzcyZZsrh9u2m4PjkE+ncc4t/vaNHpdWrc0eLvMdVq8y0uhdeMI/buze3eKpZ0xRD3hGjZs2khg2lqKjiZcjMlIYMyd2c/ZJLTEv4UPz5wd0yM83o9bZt5hcy6enSpElSz562k8GfClsbUDBZtGaN+a1trVruaIsLADZs2yY1aCDt3y+9+67Ur5/tRP6zaZN0+eVmdCYiQvrnP01xU9C6Jscxo0MHD+aOvO3ZYzoJnmydkWSm/02cmPvxnDmmMPLXf43vvivdcYfJc+aZ0qxZwbVWC+ErM9Psi/bnn9Lkyebv3eDB0osvShUrmj3oqla1nRL+QsF0EsFWMD3yiDR6tHT33dJLL9lOAwAFy8w0R28DgEC56SbzhvvMM6Xffw/9KV2HDkm3325GYiTzZm7UKHO+d2/u2qJjR4727ZMuvlj6+mvzOMcx3VcPHjTT6LyjRd6Ro8qVA1+wzJljRtBefVXq1Suwzw2czPr1ZiPpWbPMx999J114oSnszzrLNDHp1s0UUqH+7064KmxtwBomi7yb1h678BcAgtGll5o3E998k9sFLRD275emTTPnL70UHm9aYmPNHlOtWkkjRpg3dJIpgmrUMFOFjhcRYdZ5eXk85s1elSrB85q1bWumU8bG5t63erVZqxUsGRE+/vc/qX9/80uIpCTTbOXCC83noqOlDz+UWreWfvrJjPR6N51GeOKfKIvYtBaAW0RGmhGmYxsABEJ8vLRkiZk+dtZZgX1umzwe05Z77VozKuS9LyXFFE0XXSQ9+KDpPrdggWlJPnly3mtUqxZ8hcixxdK6deZnesUVUlqatUgIM0eOSPfdZ34JtHevGbn+808zTfVYjRubaXmSGeWdOzfgURFEGGGyyDvCRMEEINilpEiff26mgAVamTInvpkJF8fv0Td9evEbMASbhQvNaNlXX5nC6csvzToqwJ9uucX8okEyv5R4+un8/07deqv5RcTnn0v/+pf0wQeBy4ngEmS/ewovTMkD4BYpKeYYqIIpLU36z3+krKzAPJ9bhEqxJJnf8P/yi3T66dKyZeY3/ZMm2U6FUPfAA2b09csvTRFU0N8pj0d66y2z3nz8+IBFRBCiYLKIESYAbuGdFrZkiZSd7f/ne+op85vgG27w/3PBnrZtpXnzzIbIaWmm7fiTTwbmzxjCw5EjuesgJfNv2Zo1pmAvjHLlpGHDAt/sBsGFgsmSw4fNYmaJESYAwa9uXbMQ+uBBs/bEn1askMaONeeh3EIcRuXKZmH9wIGmscXjj5tOekBJrVtnivHzz8/thCeZf8uK48gR6dFHzdpChBcKJkscx2wa+PDDpjsLAASz0qXNImjJ/9Py7r3XNJi46CJzQ+iLijKb2779ttS+vVk7ApTEl1+aTpN//GGax6SmlvyagwebFv833JC7zQLCA/swAQAK5dFHTRvou+6SOnTwz3N8+63Us6eZ/rJ4sdmwFuElOzu3u192tnnDe/bZdjPBPY4cMeuUvB3uzj5b+ugjqWbNkl97/XqpRQtTfD3yiJk6DHcrbG3ACBMAoFCeesrsTeKvYunIETO6JJnf5FIshadjW6GPHGlGnJ56inVNOLU1a8y/T95i6f77pRkzfFMsSeY6b75pzkePzrs2CqGNgsmSjRvNjvWbN9tOAgDB4aWXzPqlypXNaBbCm+NIe/aY42OPSVddlbv2FziZSZPMfknly0tffy0995zvmzVcc410883mz+WNN0q7d/v2+ghOFEyWfPyx+a3Zgw/aTgIAhZedbablHT3q+2t36WKmzzz9tMSsaXg80ssvS//+t1nj5N28eMUK28kQrO6+2/yy5c8/pYsv9t/zvPSSGQHfvNmstwufxS3hi4LJkp07zZGW4gDcwnGk6tWlevXMvjm+1qaNNHOm1Lev768N97rlFrNhb7Vq0tKlZr+mb76xnQrBYM0a6frrc0cePR7Tlr5GDf8+b1ycmZ4cGWk6PK5c6d/ng30UTJawaS0At/F4pFq1zLkvO+UduzalVKm8a1gAyYw8zptnZmakpkpXXy1t3247FWz6/HPTBe+jj6ShQwP//GecIb33nhnNYr1l6OO/JUvYtBaAG6WkmKOvCqbsbDMV76GHWJ+CglWpIk2dKt1xh/Taa2atG8JPRoaZenfVVWaz4/btTcc6G667zoy4I/RRMFnClDwAbuTrgun996VffjEblaan++aaCF1RUdK4cVL//rn3LVzIlKhwsXq1KZBeecV8/MADplNdcrLVWJKkKVOkJ56wnQL+Utp2gHDFCBMAN/JlwbR/vxlZkqTHH5eqVi35NRFeduyQevUyIw0ffij16GE7Efxl6lTpssvMz7pCBTMdLlg2tl61Sjr/fDNifsYZ/m04ATsYYbKENUwA3MhbMK1ZIx04ULJrPfWUtG2bVL++dM89Jc+G8JOdbUYXUlPNhsejR9OxLFQ1aSKVKWP2Wfrzz+ApliQzLc/7b9hNN0lbt9rNA9+jYLIgO9u0zX3kETMnGwDc4rTTzM1xTMey4lqxQnrhBXP+wgtmqhVQVN51Tbffbv5MPvII+zWFkl27cs8rVzbdEqdODY4peMcbM8Y0odi1y3T6ZKPl0ELBZEGpUtKgQea3q2XK2E4DAEXzj3+YN6YVKhT/GkOGSJmZZgpVz56+y4bwExUlvf669Oabps3zF1+YrnqrVtlOhpL45BOpbl3TBc+rQQPfb0TrK9HRZlpomTKm1fjzz9tOBF/yOE74DF6npaUpMTFRqampSmBXRACwYt06qWlTUzAtWiQ1bGg7EULF779LV15ppkRdf730wQe2E6GoDh82v1AZN858fNFF0qRJZlsDN3j7bbOZbenS0m+/SW3b2k6EghS2NmCECQAQULVqScuXS+PHUyzBt9q1k+bOlXr3Nq3H4S4rV5qfobdYGjZM+uor9xRLknTzzWafsKNHpc8+s50GvsIIEwCgSBxH2rJFWrZMOu8822mAgjmO9MYb0o03SmXL2k6D/Hz0kXTbbWZ7gYoVzZYDF15oO1Xx7Nsnffed2afJTcVeOGKECQDgF/v3S9WrS926SXv2FP7rtm0ze6YAgfTaa9Kdd5qRi9WrbafByfz1l5lCmZ4udewoLVjg3mJJkpKSzPdDsRQ6KJgAAEWSkCDVqGHOlywp/NcNGyZ17SqNGOGXWMBJtWpluuktXiy1aSN9/73tRCW3aZP5flJTbSfxjebNpaFDTTOZKVOk00+3nch3du+W+vQxWzHAvdi4FgBQZM2aSRs2mDdtHTue+vF//CG9+645Z3NRBFL79tK8eaYZxKxZponA6NHSgw8G1wjA0qVmpGXrVjMae/xx4cLczZ3//W9p5EhzHh9v2mwfe7vtttzHOk5wfZ9en3xiuhl6f/nyzDPBmbOkBgww3+vKldIvvwRvlz8UjIIJAFBkKSnSN9+YgulUsrPNVgqS1K+fdNZZ/s0GHK9aNTMd9O67pbfeMqOd8+dL//mPf9c1rV1rCqGTFUBbt0q//pq3CPrXv/K/1tateYugcuWkvXvNFNm//zY3r+uuy33syJHSyy+fWFR5b23bBnaLk0OHpMGDTRv49u3NzyUyMjSLJUl67jlp8mRp9mwzuj5qlO1Edh0+bFqwu+3nTcEEACiylBRzLEzB9N//mjcLZcuazR0BG6KjzZv01q1N4fT559Jdd0mdOhXtOtu2mT2eTlYAbd1qFvt7i5VXX5X++c/8r7VlS+5jmzY1WapUMfcdf2zQIPfrRo40t/R0Mz1v48a8t+rVcx+7caNZa7hnjxmlOt6KFVL9+ub8rbdM/mMLqurVzbFaNdMquySWL5euucaMpHk80rnnuu+Nc1HVqGFe12uuMf/+detmpiaHo4ULTQfL2283fwfdhC55AIAiW7DArA0pX97sbJ/fm579+80bvW3bzJSbBx4IaEzgpGbONHuA3XGH+XjfPmn9+pOPBG3bZjq4eQuboUML3pR07lxTlEmmQHv99fyLoBYt/N+5Ly3NfG/HF1Xe219/SbGx5rE33yy9887Jr1OqlJlWVqeO+XjyZDN6dmxxVbmyedzJfPCBeaOcni5VqiRNmCCdf77vv99gdeutZo+matVM4VCxou1EgZOdbUZPH3lEOnLEbC2xbJn5JYZtha0NKJgAAEV2+LB5o5eVlfe35Md78EHp2WfNb7AXLQqO/yCB452qCJozxzSMkMyo0QsvnLwAqlLFTDNLTAxMbl/7/XczVfH4omrzZrPR9MGDBRdXkZGmYUNysvTpp6aAys6Whg+XnnrKPKZLF1MsVasW0G/NugMHTCG9fLl0ySXSl1+G/uiaZP789OsnTZ1qPr7kEjP9tFIlu7m8ClsbMCUPAFBkMTHmDVCVKgWvf2jTxryBeuEFiiUEr9NPN2/g8iuCatfOfezAgeYWitq1M7fjZWdLO3bkFkuSadiQnp5bVG3daoqqdevMzfves1QpU3B5PNJjj0mPPy5FRATiuwkucXHShx+a123BAjNymd8vmkLFJ5+YUcV9+8z/E2PHmpE2NxaKjDABAPzq8GFTYAEIXUePmtHmjRtNMXDllbmfGzlS6tDBrN8Jd99+a0Yhk5JsJ/GvQ4ekJk1M8dy2rVnLeuw6vGDBlLyToGACgMAI1lbGAIDA+PVXs9bt8ceDt516YWsDNq4FABTLoUPS9Olm2sWxjhwx6xT+8x8zlQcAkJfjmKYgodIIJzNTevRR6Y03cu875xzpySeDt1gqCtYwAQCKZcMGUxjFxkpXXZXbHevll6UZM0wXpKuuyl3LAAAw/vzTrO+RTGFxySV285TE8uXSjTeaDpGxseZ7CbX1WYwwAQCKpV4908jh0CGzQadk1i6MHGnOx4yhWAKAkznjDGnIEHN+882mMYbbOI4ZUTrjDFMslSsnvfde6BVLEgUTAKCYIiLMol4pdwPbhx82ey+1aSP1728tGgAEvdGjzX52u3dLffuabRrcYscO6dJLzV5mBw9K551nto646irbyfyDggkAUGwpKea4eLHZq8a7L8vLL+e/gSUAwIzQf/ihabk9ZUrBe4EFkwMHzKjS119LUVFmU9offjDt+UMV/50BAIrNWzD99Zc0aJA579vX7DUCAChYw4bmF0ySaZrwxx928xRGXJzZTyklxfyi7N57Q/8XZCH+7QEA/MlbMH3yiTRrllS2rPT003YzAYCb3HSTdM01pqtosBZM8+ebRj5ejz5qiqXmze1lCiQKJgBAsXkLptKlTWe8N94IzQW/AOAvHo/5t3P6dOmuu2ynySsry/wS7KyzpOuvlzIyzP2lS4fXhuS0FQcAFFtysvmPvkkTMw2vY0fbiQDAfZKSTHvxYLJ+vZliPWOG+bhOHenwYbP2KtwwwgQAKDaPR/rHP8x/9KX5FRwAlNjy5VLnztLq1fYyfPCB1KKFKZbKljUbkX/2mZSYaC+TTRRMAAAAQJC45x5TqNxwg5SZGdjnPnDAPG/v3lJqqpk5sGCBWWfl8QQ2SzChYAIAAACCxJtvmil6f/whDR8e2OeOjjZT8SIipBEjpF9+kerWDWyGYORxHMexHSJQ0tLSlJiYqNTUVCWw/TwAAACC0GefSVdfbUZ1fvpJOvdc/z3XkSOS4+SuTVq7Vtq+PTy2hyhsbcAIEwAAABBErrrK7HXkOFKfPtKuXf55nqVLTWH08MO599WuHR7FUlFQMAEAAABBZuxYqVEjacsW6ZZbTPHkK44jvfqqdMYZ0p9/Su+/L+3d67vrhxoKJgAAACDIxMVJH34oRUVJO3dKaWm+ue62bVLPnmbPp8OHpQsuMI0dypXzzfVDEQUTAAAAEIRatpSmTjVd83zR0vt//5OaNZO++86sWXrxRXNerVrJrx3K2DUDAAAACFLt2+f92HGK1+J7716zEW1qqtS8udlrqWlT32QMdRRMAAAAQJA7csQ0Zzh8WHrllaJ/fbly0muvSfPnS6NG5XbFw6nRVhwAAAAIcr/8InXqZM6//FK69NKCH5+VJT39tNSmjdS9u9/juRJtxQEAAIAQ0bGjdN995vzmm6XNm/N/7Nq1UufO0qOPSv37+65hRLiiYAIAAABcYPRo0wp8zx6zP1NWVt7PO4703ntSixbSzJlSfLz0zDPmiOKjYAIAAABcICrKtBqPizPd8559Nvdze/ZI110n9esn7d8vdeggLVxoGj0Up0kEclEwAQAAAC7RoEFu04fHHpNmzzb7NDVvLn3yiVS6tPTUU9K0aVLt2lajhgwKJgAAAMBF+vUzo0llykhbt0qVKkldu0r160u//SY98ogpnOAbdMkDAAAAXCY1Vdq9W6pTx3y8f79UqpSZrofCKWxtQO0JAAAAuExiorl50djBf5iSBwAAAAD5oGACAAAAgHxQMAEAAABAPiiYAAAAACAfFEwAAAAAkA8KJgAAAADIBwUTAAAAAOSDggkAAAAA8uGagumSSy5RjRo1FBMTo6pVq6pPnz7asmWL7VgAAAAAQphrCqauXbvqk08+0fLly/X5559r9erVuuqqq2zHAgAAABDCPI7jOLZDFMf//vc/XXbZZcrIyFBkZGShviYtLU2JiYlKTU1VQkKCnxMCAAAACFaFrQ1KBzCTz+zZs0cTJkxQ+/btCyyWMjIylJGRkfNxWlpaIOIBAAAACBGumZInSQ8++KDi4uJUoUIFbdiwQV999VWBjx8zZowSExNzbsnJyQFKCgAAACAUWC2YHnroIXk8ngJvy5Yty3n80KFD9eeff+qHH35QRESE+vbtq4JmFA4bNkypqak5t40bNwbi2wIAAAAQIqyuYdq5c6d2795d4GPq1KmjqKioE+7ftGmTkpOT9dtvv6ldu3aFej7WMAEAAACQXLKGqVKlSqpUqVKxvjY7O1uS8qxRAgAAAABfckXTh9mzZ2vOnDk655xzVK5cOa1evVqPPfaY6tatW+jRJQAAAAAoKlc0fShTpoy++OILnXfeeWrYsKFuueUWNW/eXNOnT1d0dLTteAAAAABClCtGmJo1a6YpU6bYjgEAAAAgzLhihAkAAAAAbKBgAgAAAIB8UDABAAAAQD4omAAAAAAgHxRMAAAAAJAPCiYAAAAAyAcFEwAAAADkwxX7MPmK4ziSpLS0NMtJAAAAANjkrQm8NUJ+wqpg2r9/vyQpOTnZchIAAAAAwWD//v1KTEzM9/Me51QlVQjJzs7Wli1bFB8fL4/HYzuOq6SlpSk5OVkbN25UQkKC7Tghh9fXv3h9/YvX1794ff2L19e/eH39j9e4+BzH0f79+1WtWjWVKpX/SqWwGmEqVaqUqlevbjuGqyUkJPCX0Y94ff2L19e/eH39i9fXv3h9/YvX1/94jYunoJElL5o+AAAAAEA+KJgAAAAAIB8UTCiU6OhoDR8+XNHR0bajhCReX//i9fUvXl//4vX1L15f/+L19T9eY/8Lq6YPAAAAAFAUjDABAAAAQD4omAAAAAAgHxRMAAAAAJAPCiYAAAAAyAcFEwo0ZswYtW3bVvHx8TrttNN02WWXafny5bZjhaSnn35aHo9HgwcPth0lpGzevFk33nijKlSooNjYWDVr1kxz5861HSskZGVl6bHHHlPt2rUVGxurunXr6sknnxS9hIpnxowZ6tWrl6pVqyaPx6Mvv/wyz+cdx9Hjjz+uqlWrKjY2Vt26ddPKlSvthHWhgl7fzMxMPfjgg2rWrJni4uJUrVo19e3bV1u2bLEX2GVO9ef3WHfccYc8Ho/Gjh0bsHxuV5jXd+nSpbrkkkuUmJiouLg4tW3bVhs2bAh82BBEwYQCTZ8+XQMHDtSsWbP0448/KjMzUxdccIEOHDhgO1pImTNnjt544w01b97cdpSQsnfvXnXo0EGRkZH67rvv9Pfff+uf//ynypUrZztaSHjmmWc0btw4vfLKK1q6dKmeeeYZPfvss3r55ZdtR3OlAwcOqEWLFnr11VdP+vlnn31WL730kl5//XXNnj1bcXFx6t69uw4fPhzgpO5U0Ot78OBBzZ8/X4899pjmz5+vL774QsuXL9cll1xiIak7nerPr9fEiRM1a9YsVatWLUDJQsOpXt/Vq1frnHPOUaNGjTRt2jT99ddfeuyxxxQTExPgpCHKAYpgx44djiRn+vTptqOEjP379zv169d3fvzxR6dz587OPffcYztSyHjwwQedc845x3aMkNWzZ0/n5ptvznPfFVdc4fTu3dtSotAhyZk4cWLOx9nZ2U6VKlWc5557Lue+ffv2OdHR0c6HH35oIaG7Hf/6nswff/zhSHLWr18fmFAhJL/Xd9OmTc7pp5/uLF682KlZs6bzwgsvBDxbKDjZ63vttdc6N954o51AYYARJhRJamqqJKl8+fKWk4SOgQMHqmfPnurWrZvtKCHnf//7n9q0aaOrr75ap512mlq1aqW33nrLdqyQ0b59e/38889asWKFJGnhwoX69ddf1aNHD8vJQs/atWu1bdu2PP9OJCYm6qyzztLvv/9uMVnoSk1NlcfjUVJSku0oISE7O1t9+vTR0KFD1bRpU9txQkp2dra++eYbNWjQQN27d9dpp52ms846q8BpkSgaCiYUWnZ2tgYPHqwOHTooJSXFdpyQ8NFHH2n+/PkaM2aM7Sghac2aNRo3bpzq16+vyZMn684779SgQYM0fvx429FCwkMPPaTrrrtOjRo1UmRkpFq1aqXBgwerd+/etqOFnG3btkmSKleunOf+ypUr53wOvnP48GE9+OCDuv7665WQkGA7Tkh45plnVLp0aQ0aNMh2lJCzY8cOpaen6+mnn9aFF16oH374QZdffrmuuOIKTZ8+3Xa8kFDadgC4x8CBA7V48WL9+uuvtqOEhI0bN+qee+7Rjz/+yBxjP8nOzlabNm00evRoSVKrVq20ePFivf766+rXr5/ldO73ySefaMKECfrggw/UtGlTLViwQIMHD1a1atV4feFamZmZuuaaa+Q4jsaNG2c7TkiYN2+eXnzxRc2fP18ej8d2nJCTnZ0tSbr00kt17733SpJatmyp3377Ta+//ro6d+5sM15IYIQJhXLXXXdp0qRJmjp1qqpXr247TkiYN2+eduzYoTPOOEOlS5dW6dKlNX36dL300ksqXbq0srKybEd0vapVq6pJkyZ57mvcuDFdg3xk6NChOaNMzZo1U58+fXTvvfcyYuoHVapUkSRt3749z/3bt2/P+RxKzlssrV+/Xj/++COjSz7yyy+/aMeOHapRo0bO/3fr16/Xfffdp1q1atmO53oVK1ZU6dKl+f/OjxhhQoEcx9Hdd9+tiRMnatq0aapdu7btSCHjvPPO06JFi/Lcd9NNN6lRo0Z68MEHFRERYSlZ6OjQocMJbfBXrFihmjVrWkoUWg4ePKhSpfL+3i0iIiLnt53wndq1a6tKlSr6+eef1bJlS0lSWlqaZs+erTvvvNNuuBDhLZZWrlypqVOnqkKFCrYjhYw+ffqcsE63e/fu6tOnj2666SZLqUJHVFSU2rZty/93fkTBhAINHDhQH3zwgb766ivFx8fnzJVPTExUbGys5XTuFh8ff8JasLi4OFWoUIE1Yj5y7733qn379ho9erSuueYa/fHHH3rzzTf15ptv2o4WEnr16qVRo0apRo0aatq0qf7880/961//0s0332w7miulp6dr1apVOR+vXbtWCxYsUPny5VWjRg0NHjxYTz31lOrXr6/atWvrscceU7Vq1XTZZZfZC+0iBb2+VatW1VVXXaX58+dr0qRJysrKyvn/rnz58oqKirIV2zVO9ef3+AI0MjJSVapUUcOGDQMd1ZVO9foOHTpU1157rTp16qSuXbvq+++/19dff61p06bZCx1KbLfpQ3CTdNLbO++8YztaSKKtuO99/fXXTkpKihMdHe00atTIefPNN21HChlpaWnOPffc49SoUcOJiYlx6tSp4zzyyCNORkaG7WiuNHXq1JP+e9uvXz/HcUxr8ccee8ypXLmyEx0d7Zx33nnO8uXL7YZ2kYJe37Vr1+b7/93UqVNtR3eFU/35PR5txYumMK/v22+/7dSrV8+JiYlxWrRo4Xz55Zf2AocYj+OwJTsAAAAAnAxNHwAAAAAgHxRMAAAAAJAPCiYAAAAAyAcFEwAAAADkg4IJAAAAAPJBwQQAAAAA+aBgAgAAAIB8UDABAAAAQD4omAAgBKxbt04ej0cLFiywHSXHsmXLdPbZZysmJkYtW7Y86WMcx9E//vEPlS9f3nr+YHwNi2vatGnyeDzat2+f359rxIgR+f58ASAUUDABgA/0799fHo9HTz/9dJ77v/zyS3k8Hkup7Bo+fLji4uK0fPly/fzzzyd9zPfff693331XkyZN0tatW5WSkhKQbP3799dll12W577k5OSAZnAjj8ejL7/8Ms99999/f74/XwAIBRRMAOAjMTExeuaZZ7R3717bUXzmyJEjxf7a1atX65xzzlHNmjVVoUKFfB9TtWpVtW/fXlWqVFHp0qWL/XwlFRERYT2DG5UtWzbfny8AhAIKJgDwkW7duqlKlSoaM2ZMvo852fSlsWPHqlatWjkfe0c/Ro8ercqVKyspKUlPPPGEjh49qqFDh6p8+fKqXr263nnnnROuv2zZMrVv314xMTFKSUnR9OnT83x+8eLF6tGjh8qWLavKlSurT58+2rVrV87nu3TporvuukuDBw9WxYoV1b1795N+H9nZ2XriiSdUvXp1RUdHq2XLlvr+++9zPu/xeDRv3jw98cQT8ng8GjFixAnX6N+/v+6++25t2LBBHo8n5zWoVauWxo4dm+exLVu2zHMNj8ejf//737r88stVpkwZ1a9fX//73//yfM2SJUt08cUXKyEhQfHx8erYsaNWr16tESNGaPz48frqq6/k8Xjk8Xg0bdq0k07Jmz59us4880xFR0eratWqeuihh3T06NE8r9egQYP0wAMPqHz58qpSpcpJv9fj/fvf/1bjxo0VExOjRo0a6bXXXsv5XPv27fXggw/mefzOnTsVGRmpGTNmSJLef/99tWnTRvHx8apSpYpuuOEG7dixI9/nK8yfuzlz5uj8889XxYoVlZiYqM6dO2v+/Pk5n/c+9vLLL8/z8zr+2qf6s+F9nb/44gt17dpVZcqUUYsWLfT777/nPGb9+vXq1auXypUrp7i4ODVt2lTffvttga8pAPgLBRMA+EhERIRGjx6tl19+WZs2bSrRtaZMmaItW7ZoxowZ+te//qXhw4fr4osvVrly5TR79mzdcccduv322094nqFDh+q+++7Tn3/+qXbt2qlXr17avXu3JGnfvn0699xz1apVK82dO1fff/+9tm/frmuuuSbPNcaPH6+oqCjNnDlTr7/++knzvfjii/rnP/+p559/Xn/99Ze6d++uSy65RCtXrpQkbd26VU2bNtV9992nrVu36v777z/pNbxvrLdu3ao5c+YU6TUaOXKkrrnmGv3111+66KKL1Lt3b+3Zs0eStHnzZnXq1EnR0dGaMmWK5s2bp5tvvllHjx7V/fffr2uuuUYXXnihtm7dqq1bt6p9+/YnXH/z5s266KKL1LZtWy1cuFDjxo3T22+/raeeeuqE1ysuLk6zZ8/Ws88+qyeeeEI//vhjvrknTJigxx9/XKNGjdLSpUs1evRoPfbYYxo/frwkqXfv3vroo4/kOE7O13z88ceqVq2aOnbsKEnKzMzUk08+qYULF+rLL7/UunXr1L9//yK9fsfbv3+/+vXrp19//VWzZs1S/fr1ddFFF2n//v2SlPPzeeeddwr8eZ3qz4bXI488ovvvv18LFixQgwYNdP311+cUowMHDlRGRoZmzJihRYsW6ZlnnlHZsmVL9P0BQLE5AIAS69evn3PppZc6juM4Z599tnPzzTc7juM4EydOdI79p3b48OFOixYt8nztCy+84NSsWTPPtWrWrOlkZWXl3NewYUOnY8eOOR8fPXrUiYuLcz788EPHcRxn7dq1jiTn6aefznlMZmamU716deeZZ55xHMdxnnzySeeCCy7I89wbN250JDnLly93HMdxOnfu7LRq1eqU32+1atWcUaNG5bmvbdu2zoABA3I+btGihTN8+PACr3P89+44jlOzZk3nhRdeyHPf8deS5Dz66KM5H6enpzuSnO+++85xHMcZNmyYU7t2befIkSMnfd5jf15e3tfwzz//dBzHcR5++GGnYcOGTnZ2ds5jXn31Vads2bI5P5vOnTs755xzTp7rtG3b1nnwwQfz/Z7r1q3rfPDBB3nue/LJJ5127do5juM4O3bscEqXLu3MmDEj5/Pt2rUr8Jpz5sxxJDn79+93HMdxpk6d6khy9u7d6zhO4f7cHS8rK8uJj493vv7665z7JDkTJ07M87jjr32qPxve1/nf//53zueXLFniSHKWLl3qOI7jNGvWzBkxYkS+2QAgkBhhAgAfe+aZZzR+/HgtXbq02Ndo2rSpSpXK/Se6cuXKatasWc7HERERqlChwgnTsNq1a5dzXrp0abVp0yYnx8KFCzV16lSVLVs259aoUSNJZi2RV+vWrQvMlpaWpi1btqhDhw557u/QoUOJvueiat68ec55XFycEhIScl6PBQsWqGPHjoqMjCz29ZcuXap27drladrRoUMHpaen5xnZOzaHJFWtWjXf6XEHDhzQ6tWrdcstt+T5OTz11FM5P4NKlSrpggsu0IQJEyRJa9eu1e+//67evXvnXGfevHnq1auXatSoofj4eHXu3FmStGHDhmJ/v9u3b9dtt92m+vXrKzExUQkJCUpPTy/SNYvyZ+PY161q1aqSlPO6DRo0SE899ZQ6dOig4cOH66+//irutwUAJUbBBAA+1qlTJ3Xv3l3Dhg074XOlSpXKM9VKMtOrjnf8G32Px3PS+7KzswudKz09Xb169dKCBQvy3FauXKlOnTrlPC4uLq7Q1/SHkrxG3tcjNjbWfwGLkON46enpkqS33norz89g8eLFmjVrVs7jevfurc8++0yZmZn64IMP1KxZs5yC+cCBA+revbsSEhI0YcIEzZkzRxMnTpSUf5OOwrym/fr104IFC/Tiiy/qt99+04IFC1ShQoUSNf4oyLGvm7co9b5ut956q9asWaM+ffpo0aJFatOmjV5++WW/5ACAU6FgAgA/ePrpp/X111/nWcgumdGDbdu25Xnz6st9f45903306FHNmzdPjRs3liSdccYZWrJkiWrVqqV69erluRWlSEpISFC1atU0c+bMPPfPnDlTTZo0KfH3UKlSJW3dujXn47S0NK1du7ZI12jevLl++eWXkxZakhQVFaWsrKwCr9G4cWP9/vvveX5WM2fOVHx8vKpXr16kPF6VK1dWtWrVtGbNmhN+BrVr18553KWXXqrDhw/r+++/1wcffJBndGnZsmXavXu3nn76aXXs2FGNGjUqsOGDVLg/dzNnztSgQYN00UUXqWnTpoqOjs7TEEQyRU5Br5sv/2wkJyfrjjvu0BdffKH77rtPb731VpG+HgB8hYIJAPygWbNm6t27t1566aU893fp0kU7d+7Us88+q9WrV+vVV1/Vd99957PnffXVVzVx4kQtW7ZMAwcO1N69e3XzzTdL+r927icUtjeO4/jnpmxsFGMjk9LQqOnkz1anLKRYzNIkSSj5M6aRokhYOAoLYoNmalayMguZhAUbQ8IsxhAWNhaiZDvdu1BTLufe6+f+7ur9Wp7z9Dw99d18zvM9z+uP9I+Pj/L5fDo6OtL19bVisZja2tp+Gx5+Njg4qOnpaa2trSmVSmloaEinp6fq7+//8h5qa2sViUS0v7+vRCKh1tZWZWVlfWqO3t5ePT8/q6mpScfHx7q6ulIkElEqlZL0euPb+fm5UqmUHh4ePgxW3d3duru7U19fny4uLrSxsaGxsTEFg8E37ZKfNT4+rqmpKc3Pz+vy8lKJREKhUEhzc3OZMTk5OfJ6vRodHVUymZTP58u8czqdys7O1sLCgm5ubhSNRjU5OfnLNf+k7lwulyKRiJLJpA4PD9Xc3PzupK64uFg7Ozu6v7+3vT7/b9RGIBBQLBbT7e2tTk5OtLe3lwn+APCvEZgA4H8yMTHxrjXL7XZraWlJi4uLMgxD8Xj8wxvk/ivLsmRZlgzD0MHBgaLRqPLz8yUp8+U/nU6rrq5OHo9HgUBAubm5nw4Afr9fwWBQAwMD8ng82traUjQalcvl+vIehoeHZZqmGhsb1dDQIK/Xq5KSkk/NkZeXp93dXb28vMg0TVVVVWl5eTnTBtbZ2amysjJVV1fL4XC8OxGRpMLCQm1ubioej8swDHV1dam9vV0jIyNf2l9HR4dWVlYUCoXk8XhkmqbC4fCbEybptS3v7OxMNTU1cjqdmecOh0PhcFjr6+sqLy+XZVmamZn55Zp/Unerq6t6enpSZWWlWlpa5Pf7VVBQ8GbM7Oystre3VVRUpIqKig/X+hu1kU6n1dPTI7fbrfr6epWWlr65eh0A/qVv339uagYAAAAASOKECQAAAABsEZgAAAAAwAaBCQAAAABsEJgAAAAAwAaBCQAAAABsEJgAAAAAwAaBCQAAAABsEJgAAAAAwAaBCQAAAABsEJgAAAAAwAaBCQAAAABs/AABrRpDPjeAawAAAABJRU5ErkJggg==", + "text/plain": [ + "