-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathflenqa.py
124 lines (117 loc) · 4.69 KB
/
flenqa.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
import os
from typing import Any, Optional
from eureka_ml_insights.core import (
DataProcessing,
EvalReporting,
Inference,
PromptProcessing,
)
from eureka_ml_insights.data_utils import (
ColumnRename,
DataReader,
HFDataReader,
MMDataLoader,
SequenceTransform,
)
from eureka_ml_insights.data_utils.flenqa_utils import FlenQAOutputProcessor
from eureka_ml_insights.metrics import CountAggregator, ExactMatch
from eureka_ml_insights.configs import (
AggregatorConfig,
DataProcessingConfig,
DataSetConfig,
EvalReportingConfig,
InferenceConfig,
MetricConfig,
ModelConfig,
PipelineConfig,
PromptProcessingConfig,
)
from eureka_ml_insights.configs import ExperimentConfig
class FlenQA_Experiment_Pipeline(ExperimentConfig):
def configure_pipeline(
self, model_config: ModelConfig, resume_from: str = None, **kwargs: dict[str, Any]
) -> PipelineConfig:
# Configure the data pre processing component.
self.data_pre_processing = PromptProcessingConfig(
component_type=PromptProcessing,
data_reader_config=DataSetConfig(
HFDataReader,
{
"path": "alonj/FLenQA",
"split": ["eval"],
"transform": SequenceTransform(
[
ColumnRename(name_mapping={"assertion/question": "question", "label": "ground_truth"}),
]
),
},
),
prompt_template_path=os.path.join(
os.path.dirname(__file__), "../prompt_templates/flenqa_templates/flenqa.jinja"
),
output_dir=os.path.join(self.log_dir, "data_pre_processing_output"),
)
# Inference component
self.inference_comp = InferenceConfig(
component_type=Inference,
model_config=model_config,
data_loader_config=DataSetConfig(
MMDataLoader,
{"path": os.path.join(self.data_pre_processing.output_dir, "transformed_data.jsonl")},
),
resume_from=resume_from,
output_dir=os.path.join(self.log_dir, "inference_result"),
)
# Configure the data post processing component.
self.data_post_processing = DataProcessingConfig(
component_type=DataProcessing,
data_reader_config=DataSetConfig(
DataReader,
{
"path": os.path.join(self.inference_comp.output_dir, "inference_result.jsonl"),
"transform": FlenQAOutputProcessor(),
},
),
output_dir=os.path.join(self.log_dir, "data_post_processing_output"),
)
# Configure the evaluation and reporting component.
self.evalreporting_comp = EvalReportingConfig(
component_type=EvalReporting,
data_reader_config=DataSetConfig(
DataReader,
{
"path": os.path.join(self.data_post_processing.output_dir, "transformed_data.jsonl"),
"transform": ColumnRename(
name_mapping={"model_output": "raw_model_output", "categorical_response": "model_output"}
),
},
),
metric_config=MetricConfig(ExactMatch),
aggregator_configs=[
AggregatorConfig(CountAggregator, {"column_names": ["ExactMatch_result"], "normalize": True}),
AggregatorConfig(
CountAggregator, {"column_names": ["ExactMatch_result"], "group_by": "ctx_size", "normalize": True}
),
AggregatorConfig(
CountAggregator,
{"column_names": ["ExactMatch_result"], "group_by": "dataset", "normalize": True},
),
AggregatorConfig(
CountAggregator,
{"column_names": ["ExactMatch_result"], "group_by": ["ctx_size", "dataset"], "normalize": True},
),
AggregatorConfig(
CountAggregator,
{"column_names": ["ExactMatch_result"], "group_by": "padding_type", "normalize": True},
),
AggregatorConfig(
CountAggregator,
{"column_names": ["ExactMatch_result"], "group_by": "dispersion", "normalize": True},
),
],
output_dir=os.path.join(self.log_dir, "eval_report"),
)
return PipelineConfig(
[self.data_pre_processing, self.inference_comp, self.data_post_processing, self.evalreporting_comp],
self.log_dir,
)