Skip to content

Commit 5bb2b39

Browse files
Update README.md (#114)
1 parent 0188b44 commit 5bb2b39

File tree

1 file changed

+2
-2
lines changed

1 file changed

+2
-2
lines changed

README.md

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -245,8 +245,8 @@ mattergen-train data_module=alex_mp_20 ~trainer.logger trainer.accumulate_grad_b
245245
Even though not a focus of our paper, you can also train MatterGen in crystal structure prediction (CSP) mode, where it does not denoise the atom types during generation.
246246
This gives you the ability to condition on a specific chemical formula for generation. You can train MatterGen in this mode by passing `--config-name=csp` to `run.py`.
247247

248-
To sample from this model, pass `--target_compositions=[{"<element1>": <number_of_element1_atoms>, "<element2>": <number_of_element2_atoms>, ..., "<elementN>": <number_of_elementN_atoms>}] --sampling-config-name=csp` to `generate.py`.
249-
An example composition could be `--target_compositions=[{"Na": 1, "Cl": 1}]`.
248+
To sample from this model, pass `--target_compositions=['{"<element1>": <number_of_element1_atoms>, "<element2>": <number_of_element2_atoms>, ..., "<elementN>": <number_of_elementN_atoms>}'] --sampling-config-name=csp` to `generate.py`.
249+
An example composition could be `--target_compositions=['{"Na": 1, "Cl": 1}']`.
250250
### Fine-tuning on property data
251251

252252
You can fine-tune the MatterGen base model using the following command.

0 commit comments

Comments
 (0)