-
Notifications
You must be signed in to change notification settings - Fork 3.7k
Open
Labels
performanceissues related to performance regressionsissues related to performance regressions
Description
Describe the issue
Description
We observed a performance regression in the Mod operator when using float32 data type with fmod=1 attribute between ONNXRuntime v1.18.0 and v1.19.0. This is a separate regression from the larger one introduced in v1.20.0 → v1.21.0.
Affected Operator
Mod
- Opset Version: 13
- Data Type: float32
- Attribute: fmod=1
- Regression: +9.3% kernel slowdown
Test Case Details
Test Case: mod_mod_13_mod_fmod1_float32_negative_divisor
Inputs:
-
X tensor:
- Data type: float32 (type=1)
- Shape: [8, 128] (1,024 elements)
-
Y tensor:
- Data type: float32 (type=1)
- Shape: [8, 128]
Attributes:
- fmod: 1 (C-style fmod semantics)
Output:
- Data type: float32
- Shape: [8, 128]
Performance:
- v1.18.0: 0.0049 ms (kernel time)
- v1.19.0: 0.0053 ms (kernel time)
- Kernel regression: +9.3% slowdown
- Confirmation: 4/10 validation runs confirmed
Regression Characteristics
Affected Configuration
- Data type: float32
- Attribute: fmod=1 (C-style floating-point modulo)
- Tensor size: Small to medium (1K elements)
To reproduce
python script_profiling.py mod_mod_13_mod_fmod1_float32_negative_divisor 1.18.0 1.19.0Urgency
No response
Platform
Linux
OS Version
Ubuntu 24.04.3 LTS
ONNX Runtime Installation
Released Package
ONNX Runtime Version or Commit ID
1.19.0
ONNX Runtime API
Python
Architecture
X64
Execution Provider
Default CPU
Execution Provider Library Version
No response
Model File
No response
Is this a quantized model?
Yes
Reactions are currently unavailable
Metadata
Metadata
Assignees
Labels
performanceissues related to performance regressionsissues related to performance regressions