|
| 1 | +#!/usr/bin/env python |
| 2 | + |
| 3 | +import shutil |
| 4 | + |
| 5 | +from accelerate import PartialState |
| 6 | +from datasets import load_dataset |
| 7 | +from transformers import ( |
| 8 | + AutoModelForCausalLM, |
| 9 | + AutoModelForSequenceClassification, |
| 10 | + AutoTokenizer, |
| 11 | + HfArgumentParser, |
| 12 | +) |
| 13 | + |
| 14 | +from trl import ModelConfig |
| 15 | +from trl.trainer.ppov2_trainer import PPOv2Config, PPOv2Trainer |
| 16 | +from trl.trainer.utils import SIMPLE_QUERY_CHAT_TEMPLATE |
| 17 | + |
| 18 | + |
| 19 | +class PPOv2TrainerIntrumented(PPOv2Trainer): |
| 20 | + def __init__(self, *args, **kwargs): |
| 21 | + super().__init__(*args, **kwargs) |
| 22 | + |
| 23 | + def batch_size_fn(batch): |
| 24 | + x, y = batch['input_ids'].shape |
| 25 | + return x * y |
| 26 | + |
| 27 | + from benchmate.observer import BenchObserver |
| 28 | + observer = BenchObserver( |
| 29 | + batch_size_fn=batch_size_fn, |
| 30 | + earlystop=70, |
| 31 | + raise_stop_program=True, |
| 32 | + stdout=True, |
| 33 | + ) |
| 34 | + |
| 35 | + self.dataloader = observer.iterate(self.dataloader) |
| 36 | + |
| 37 | + def generate_completions(self, sampling: bool = False): |
| 38 | + pass |
| 39 | + |
| 40 | + def _save_checkpoint(self, *args, **kwargs): |
| 41 | + pass |
| 42 | + |
| 43 | + def save_model(self, *args, **kwargs): |
| 44 | + pass |
| 45 | + |
| 46 | + |
| 47 | +def main(): |
| 48 | + parser = HfArgumentParser((PPOv2Config, ModelConfig)) |
| 49 | + config, model_config = parser.parse_args_into_dataclasses() |
| 50 | + # remove output_dir if exists |
| 51 | + shutil.rmtree(config.output_dir, ignore_errors=True) |
| 52 | + |
| 53 | + ################ |
| 54 | + # Model & Tokenizer |
| 55 | + ################ |
| 56 | + tokenizer = AutoTokenizer.from_pretrained( |
| 57 | + model_config.model_name_or_path, |
| 58 | + padding_side="left", |
| 59 | + trust_remote_code=model_config.trust_remote_code, |
| 60 | + ) |
| 61 | + tokenizer.add_special_tokens({"pad_token": "[PAD]"}) |
| 62 | + if tokenizer.chat_template is None: |
| 63 | + tokenizer.chat_template = SIMPLE_QUERY_CHAT_TEMPLATE |
| 64 | + value_model = AutoModelForSequenceClassification.from_pretrained( |
| 65 | + config.reward_model_path, trust_remote_code=model_config.trust_remote_code, num_labels=1 |
| 66 | + ) |
| 67 | + reward_model = AutoModelForSequenceClassification.from_pretrained( |
| 68 | + config.reward_model_path, trust_remote_code=model_config.trust_remote_code, num_labels=1 |
| 69 | + ) |
| 70 | + ref_policy = AutoModelForCausalLM.from_pretrained( |
| 71 | + config.sft_model_path, trust_remote_code=model_config.trust_remote_code |
| 72 | + ) |
| 73 | + policy = AutoModelForCausalLM.from_pretrained( |
| 74 | + config.sft_model_path, trust_remote_code=model_config.trust_remote_code |
| 75 | + ) |
| 76 | + ################ |
| 77 | + # Dataset |
| 78 | + ################ |
| 79 | + raw_datasets = load_dataset("trl-internal-testing/descriptiveness-sentiment-trl-style", split="descriptiveness") |
| 80 | + eval_samples = 20 |
| 81 | + train_dataset = raw_datasets.select(range(len(raw_datasets) - eval_samples)) |
| 82 | + eval_dataset = raw_datasets.select(range(len(raw_datasets) - eval_samples, len(raw_datasets))) |
| 83 | + dataset_text_field = "prompt" |
| 84 | + |
| 85 | + def prepare_dataset(dataset, tokenizer): |
| 86 | + """pre-tokenize the dataset before training; only collate during training""" |
| 87 | + |
| 88 | + def tokenize(element): |
| 89 | + outputs = tokenizer( |
| 90 | + element[dataset_text_field], |
| 91 | + padding=False, |
| 92 | + ) |
| 93 | + return {"input_ids": outputs["input_ids"]} |
| 94 | + |
| 95 | + return dataset.map( |
| 96 | + tokenize, |
| 97 | + batched=True, |
| 98 | + remove_columns=dataset.column_names, |
| 99 | + num_proc=config.dataset_num_proc, |
| 100 | + ) |
| 101 | + |
| 102 | + # Compute that only on the main process for faster data processing. |
| 103 | + # see: https://github.com/huggingface/trl/pull/1255 |
| 104 | + with PartialState().local_main_process_first(): |
| 105 | + train_dataset = prepare_dataset(train_dataset, tokenizer) |
| 106 | + eval_dataset = prepare_dataset(eval_dataset, tokenizer) |
| 107 | + |
| 108 | + ################ |
| 109 | + # Training |
| 110 | + ################ |
| 111 | + trainer = PPOv2TrainerIntrumented( |
| 112 | + config=config, |
| 113 | + tokenizer=tokenizer, |
| 114 | + policy=policy, |
| 115 | + ref_policy=ref_policy, |
| 116 | + reward_model=reward_model, |
| 117 | + value_model=value_model, |
| 118 | + train_dataset=train_dataset, |
| 119 | + eval_dataset=eval_dataset, |
| 120 | + ) |
| 121 | + trainer.train() |
| 122 | + trainer.save_model(config.output_dir) |
| 123 | + if config.push_to_hub: |
| 124 | + trainer.push_to_hub() |
| 125 | + trainer.generate_completions() |
| 126 | + |
| 127 | + |
| 128 | +if __name__ == "__main__": |
| 129 | + from voir.phase import StopProgram |
| 130 | + from benchmate.monitor import bench_monitor |
| 131 | + |
| 132 | + try: |
| 133 | + with bench_monitor(): |
| 134 | + main() |
| 135 | + except StopProgram: |
| 136 | + pass |
0 commit comments