-
Notifications
You must be signed in to change notification settings - Fork 63
/
Copy pathrun_txagent_app.py
executable file
·293 lines (249 loc) · 12.6 KB
/
run_txagent_app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
import random
import datetime
import sys
from txagent import TxAgent
import spaces
import gradio as gr
import os
import os
# Determine the directory where the current file is located
current_dir = os.path.dirname(os.path.abspath(__file__))
os.environ["MKL_THREADING_LAYER"] = "GNU"
# Set an environment variable
HF_TOKEN = os.environ.get("HF_TOKEN", None)
DESCRIPTION = '''
<div>
<h1 style="text-align: center;">TxAgent: An AI Agent for Therapeutic Reasoning Across a Universe of Tools </h1>
</div>
'''
INTRO = """
Precision therapeutics require multimodal adaptive models that provide personalized treatment recommendations. We introduce TxAgent, an AI agent that leverages multi-step reasoning and real-time biomedical knowledge retrieval across a toolbox of 211 expert-curated tools to navigate complex drug interactions, contraindications, and patient-specific treatment strategies, delivering evidence-grounded therapeutic decisions. TxAgent executes goal-oriented tool selection and iterative function calls to solve therapeutic tasks that require deep clinical understanding and cross-source validation. The ToolUniverse consolidates 211 tools linked to trusted sources, including all US FDA-approved drugs since 1939 and validated clinical insights from Open Targets.
"""
LICENSE = """
We welcome your feedback and suggestions to enhance your experience with TxAgent, and if you're interested in collaboration, please email Marinka Zitnik and Shanghua Gao.
### Medical Advice Disclaimer
DISCLAIMER: THIS WEBSITE DOES NOT PROVIDE MEDICAL ADVICE
The information, including but not limited to, text, graphics, images and other material contained on this website are for informational purposes only. No material on this site is intended to be a substitute for professional medical advice, diagnosis or treatment. Always seek the advice of your physician or other qualified health care provider with any questions you may have regarding a medical condition or treatment and before undertaking a new health care regimen, and never disregard professional medical advice or delay in seeking it because of something you have read on this website.
"""
PLACEHOLDER = """
<div style="padding: 30px; text-align: center; display: flex; flex-direction: column; align-items: center;">
<h1 style="font-size: 28px; margin-bottom: 2px; opacity: 0.55;">TxAgent</h1>
<p style="font-size: 18px; margin-bottom: 2px; opacity: 0.65;">Tips before using TxAgent:</p>
<p style="font-size: 18px; margin-bottom: 2px; opacity: 0.55;">Please click clear🗑️
(top-right) to remove previous context before sumbmitting a new question.</p>
<p style="font-size: 18px; margin-bottom: 2px; opacity: 0.55;">Click retry🔄 (below message) to get multiple versions of the answer.</p>
</div>
"""
css = """
h1 {
text-align: center;
display: block;
}
#duplicate-button {
margin: auto;
color: white;
background: #1565c0;
border-radius: 100vh;
}
.small-button button {
font-size: 12px !important;
padding: 4px 8px !important;
height: 6px !important;
width: 4px !important;
}
.gradio-accordion {
margin-top: 0px !important;
margin-bottom: 0px !important;
}
"""
chat_css = """
.gr-button { font-size: 20px !important; } /* Enlarges button icons */
.gr-button svg { width: 32px !important; height: 32px !important; } /* Enlarges SVG icons */
"""
# model_name = '/n/holylfs06/LABS/mzitnik_lab/Lab/shgao/bioagent/bio/alignment-handbook/data_new/L8-qlora-biov49v9v7v16_32k_chat01_merged'
model_name = 'mims-harvard/TxAgent-T1-Llama-3.1-8B'
rag_model_name = 'mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B'
os.environ["TOKENIZERS_PARALLELISM"] = "false"
question_examples = [
['Given a 50-year-old patient experiencing severe acute pain and considering the use of the newly approved medication, Journavx, how should the dosage be adjusted considering the presence of moderate hepatic impairment?'],
['Given a 50-year-old patient experiencing severe acute pain and considering the use of the newly approved medication, Journavx, how should the dosage be adjusted considering the presence of severe hepatic impairment?'],
['A 30-year-old patient is taking Prozac to treat their depression. They were recently diagnosed with WHIM syndrome and require a treatment for that condition as well. Is Xolremdi suitable for this patient, considering contraindications?'],
]
new_tool_files = {
'new_tool': os.path.join(current_dir, 'data', 'new_tool.json'),
}
agent = TxAgent(model_name,
rag_model_name,
tool_files_dict=new_tool_files,
force_finish=True,
enable_checker=True,
step_rag_num=10,
seed=100,
additional_default_tools=['DirectResponse', 'RequireClarification'])
agent.init_model()
def update_model_parameters(enable_finish, enable_rag, enable_summary,
init_rag_num, step_rag_num, skip_last_k,
summary_mode, summary_skip_last_k, summary_context_length, force_finish, seed):
# Update model instance parameters dynamically
updated_params = agent.update_parameters(
enable_finish=enable_finish,
enable_rag=enable_rag,
enable_summary=enable_summary,
init_rag_num=init_rag_num,
step_rag_num=step_rag_num,
skip_last_k=skip_last_k,
summary_mode=summary_mode,
summary_skip_last_k=summary_skip_last_k,
summary_context_length=summary_context_length,
force_finish=force_finish,
seed=seed,
)
return updated_params
def update_seed():
# Update model instance parameters dynamically
seed = random.randint(0, 10000)
updated_params = agent.update_parameters(
seed=seed,
)
return updated_params
def handle_retry(history, retry_data: gr.RetryData, temperature, max_new_tokens, max_tokens, multi_agent, conversation, max_round):
print("Updated seed:", update_seed())
new_history = history[:retry_data.index]
previous_prompt = history[retry_data.index]['content']
print("previous_prompt", previous_prompt)
yield from agent.run_gradio_chat(new_history + [{"role": "user", "content": previous_prompt}], temperature, max_new_tokens, max_tokens, multi_agent, conversation, max_round)
PASSWORD = "mypassword"
# Function to check if the password is correct
def check_password(input_password):
if input_password == PASSWORD:
return gr.update(visible=True), ""
else:
return gr.update(visible=False), "Incorrect password, try again!"
conversation_state = gr.State([])
# Gradio block
chatbot = gr.Chatbot(height=800, placeholder=PLACEHOLDER,
label='TxAgent', type="messages", show_copy_button=True)
with gr.Blocks(css=css) as demo:
gr.Markdown(DESCRIPTION)
gr.Markdown(INTRO)
default_temperature = 0.3
default_max_new_tokens = 1024
default_max_tokens = 81920
default_max_round = 30
temperature_state = gr.State(value=default_temperature)
max_new_tokens_state = gr.State(value=default_max_new_tokens)
max_tokens_state = gr.State(value=default_max_tokens)
max_round_state = gr.State(value=default_max_round)
chatbot.retry(handle_retry, chatbot, chatbot, temperature_state, max_new_tokens_state,
max_tokens_state, gr.Checkbox(value=False, render=False), conversation_state, max_round_state)
gr.ChatInterface(
fn=agent.run_gradio_chat,
chatbot=chatbot,
fill_height=True, fill_width=True, stop_btn=True,
additional_inputs_accordion=gr.Accordion(
label="⚙️ Inference Parameters", open=False, render=False),
additional_inputs=[
temperature_state, max_new_tokens_state, max_tokens_state,
gr.Checkbox(
label="Activate multi-agent reasoning mode (it requires additional time but offers a more comprehensive analysis).", value=False, render=False),
conversation_state,
max_round_state,
gr.Number(label="Seed", value=100, render=False)
],
examples=question_examples,
cache_examples=False,
css=chat_css,
)
with gr.Accordion("Settings", open=False):
# Define the sliders
temperature_slider = gr.Slider(
minimum=0,
maximum=1,
step=0.1,
value=default_temperature,
label="Temperature"
)
max_new_tokens_slider = gr.Slider(
minimum=128,
maximum=4096,
step=1,
value=default_max_new_tokens,
label="Max new tokens"
)
max_tokens_slider = gr.Slider(
minimum=128,
maximum=32000,
step=1,
value=default_max_tokens,
label="Max tokens"
)
max_round_slider = gr.Slider(
minimum=0,
maximum=50,
step=1,
value=default_max_round,
label="Max round")
# Automatically update states when slider values change
temperature_slider.change(
lambda x: x, inputs=temperature_slider, outputs=temperature_state)
max_new_tokens_slider.change(
lambda x: x, inputs=max_new_tokens_slider, outputs=max_new_tokens_state)
max_tokens_slider.change(
lambda x: x, inputs=max_tokens_slider, outputs=max_tokens_state)
max_round_slider.change(
lambda x: x, inputs=max_round_slider, outputs=max_round_state)
password_input = gr.Textbox(
label="Enter Password for More Settings", type="password")
incorrect_message = gr.Textbox(visible=False, interactive=False)
with gr.Accordion("⚙️ Settings", open=False, visible=False) as protected_accordion:
with gr.Row():
with gr.Column(scale=1):
with gr.Accordion("⚙️ Model Loading", open=False):
model_name_input = gr.Textbox(
label="Enter model path", value=model_name)
load_model_btn = gr.Button(value="Load Model")
load_model_btn.click(
agent.load_models, inputs=model_name_input, outputs=gr.Textbox(label="Status"))
with gr.Column(scale=1):
with gr.Accordion("⚙️ Functional Parameters", open=False):
# Create Gradio components for parameter inputs
enable_finish = gr.Checkbox(
label="Enable Finish", value=True)
enable_rag = gr.Checkbox(
label="Enable RAG", value=True)
enable_summary = gr.Checkbox(
label="Enable Summary", value=False)
init_rag_num = gr.Number(
label="Initial RAG Num", value=0)
step_rag_num = gr.Number(
label="Step RAG Num", value=10)
skip_last_k = gr.Number(label="Skip Last K", value=0)
summary_mode = gr.Textbox(
label="Summary Mode", value='step')
summary_skip_last_k = gr.Number(
label="Summary Skip Last K", value=0)
summary_context_length = gr.Number(
label="Summary Context Length", value=None)
force_finish = gr.Checkbox(
label="Force FinalAnswer", value=True)
seed = gr.Number(label="Seed", value=100)
# Button to submit and update parameters
submit_btn = gr.Button("Update Parameters")
# Display the updated parameters
updated_parameters_output = gr.JSON()
# When button is clicked, update parameters
submit_btn.click(fn=update_model_parameters,
inputs=[enable_finish, enable_rag, enable_summary, init_rag_num, step_rag_num, skip_last_k,
summary_mode, summary_skip_last_k, summary_context_length, force_finish, seed],
outputs=updated_parameters_output)
# Button to submit the password
submit_button = gr.Button("Submit")
# When the button is clicked, check if the password is correct
submit_button.click(
check_password,
inputs=password_input,
outputs=[protected_accordion, incorrect_message]
)
gr.Markdown(LICENSE)
if __name__ == "__main__":
demo.launch(share=True)