-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlanguage_translate.py
221 lines (184 loc) · 6.56 KB
/
language_translate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
import io
from functools import partial
import torch
import torch.nn as nn
from pytorch_models_imp.my_transformer import Transformer
# from pytorch_models_imp.transformer import Transformer
from torch.nn.utils.rnn import pad_sequence
from torch.utils.data import DataLoader
from torchtext.data.utils import get_tokenizer
from torchtext.utils import download_from_url, extract_archive
from torchtext.vocab import build_vocab_from_iterator
from torch.optim.lr_scheduler import LambdaLR
BATCH_SIZE = 512
NUM_LAYERS = 3
HEADS = 8
EMBED_SIZE = 512
FORWARD_EXPANSION = 4
DROPOUT = 0.1
DEVICE = torch.device("cuda:1")
MAX_LENGTH = 100
# LEARNING_RATE = 3e-4
LEARNING_RATE = 3e-4
EPOCHS = 30
WARM_UP_STAGE = 4000
def yield_tokens(filepath, tokenizer):
with io.open(filepath, encoding="utf8") as f:
for string_ in f:
yield tokenizer(string_)
def lr_lambda(step_num):
step_num += 1
step_num *= BATCH_SIZE
mult = min(step_num**(-0.5), step_num * WARM_UP_STAGE**(-1.5))
# print(LEARNING_RATE * mult)
return mult
def train(model, loss_f, optimizer, train_loader, val_loader, warmup_steps=2000):
# scheduler = LambdaLR(optimizer, lr_lambda)
for epoch in range(EPOCHS):
train_metric = 0
val_metric = 0
train_step = 0
val_step = 0
for de_batch, en_batch in train_loader:
model.train()
de_batch = de_batch.T.to(DEVICE)
en_batch = en_batch.T.to(DEVICE)
# print(en_batch.shape)
out = model(de_batch, en_batch[:, :-1])
out = out.reshape(-1, out.shape[2])
target = en_batch[:, 1:].reshape(-1)
optimizer.zero_grad()
loss = loss_f(out, target)
torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=1)
train_metric += loss.item()
# print(f"Current loss: {loss.item()}")
loss.backward()
optimizer.step()
train_step += 1
# scheduler.step()
for de_batch, en_batch in val_loader:
model.eval()
de_batch = de_batch.T.to(DEVICE)
en_batch = en_batch.T.to(DEVICE)
with torch.no_grad():
out = model(de_batch, en_batch[:, :-1])
out = out.reshape(-1, out.shape[2])
target = en_batch[:, 1:].reshape(-1)
loss = loss_f(out, target)
val_metric += loss.item()
val_step += 1
print(f"EPOCH {epoch}. Train loss: {train_metric / train_step}. Validation loss: {val_metric / val_step}")
def data_process(filepaths):
raw_de_iter = iter(io.open(filepaths[0], encoding="utf8"))
raw_en_iter = iter(io.open(filepaths[1], encoding="utf8"))
data = []
for (raw_de, raw_en) in zip(raw_de_iter, raw_en_iter):
de_tensor_ = torch.tensor(
[de_vocab[token] for token in de_tokenizer(raw_de)], dtype=torch.long
)
en_tensor_ = torch.tensor(
[en_vocab[token] for token in en_tokenizer(raw_en)], dtype=torch.long
)
data.append((de_tensor_, en_tensor_))
return data
def generate_batch(data_batch, bos_indx, pad_indx, eos_indx):
de_batch, en_batch = [], []
for (de_item, en_item) in data_batch:
de_batch.append(
torch.cat(
[torch.tensor([bos_indx]), de_item, torch.tensor([eos_indx])], dim=0
)
)
en_batch.append(
torch.cat(
[torch.tensor([bos_indx]), en_item, torch.tensor([eos_indx])], dim=0
)
)
de_batch = pad_sequence(de_batch, padding_value=pad_indx)
en_batch = pad_sequence(en_batch, padding_value=pad_indx)
return de_batch, en_batch
if __name__ == "__main__":
url_base = (
"https://raw.githubusercontent.com/multi30k/dataset/master/data/task1/raw/"
)
train_urls = ("train.de.gz", "train.en.gz")
val_urls = ("val.de.gz", "val.en.gz")
test_urls = ("test_2016_flickr.de.gz", "test_2016_flickr.en.gz")
train_filepaths = [
extract_archive(download_from_url(url_base + url))[0] for url in train_urls
]
val_filepaths = [
extract_archive(download_from_url(url_base + url))[0] for url in val_urls
]
test_filepaths = [
extract_archive(download_from_url(url_base + url))[0] for url in test_urls
]
de_tokenizer = get_tokenizer("spacy", language="de_core_news_sm")
en_tokenizer = get_tokenizer("spacy", language="en_core_web_sm")
de_vocab = build_vocab_from_iterator(
yield_tokens(train_filepaths[0], de_tokenizer),
specials=["<unk>", "<pad>", "<bos>", "<eos>"],
)
de_vocab.set_default_index(de_vocab["<unk>"])
en_vocab = build_vocab_from_iterator(
yield_tokens(train_filepaths[1], en_tokenizer),
specials=["<unk>", "<pad>", "<bos>", "<eos>"],
)
en_vocab.set_default_index(de_vocab["<unk>"])
train_data = data_process(train_filepaths)
val_data = data_process(val_filepaths)
test_data = data_process(test_filepaths)
PAD_IDX = de_vocab["<pad>"]
BOS_IDX = de_vocab["<bos>"]
EOS_IDX = de_vocab["<eos>"]
train_iter = DataLoader(
train_data,
batch_size=BATCH_SIZE,
shuffle=True,
collate_fn=partial(
generate_batch, bos_indx=BOS_IDX, pad_indx=PAD_IDX, eos_indx=EOS_IDX
),
)
valid_iter = DataLoader(
val_data,
batch_size=BATCH_SIZE,
shuffle=True,
collate_fn=partial(
generate_batch, bos_indx=BOS_IDX, pad_indx=PAD_IDX, eos_indx=EOS_IDX
),
)
test_iter = DataLoader(
test_data,
batch_size=BATCH_SIZE,
shuffle=True,
collate_fn=partial(
generate_batch, bos_indx=BOS_IDX, pad_indx=PAD_IDX, eos_indx=EOS_IDX
),
)
SRC_VOCAB_SIZE = len(de_vocab)
TRG_VOCAB_SIZE = len(en_vocab)
SRC_PAD_INDX = de_vocab["<pad>"]
TRG_PAD_INDX = en_vocab["<pad>"]
# train
transformer = Transformer(
SRC_VOCAB_SIZE,
TRG_VOCAB_SIZE,
SRC_PAD_INDX,
TRG_PAD_INDX,
EMBED_SIZE,
NUM_LAYERS,
FORWARD_EXPANSION,
HEADS,
DROPOUT,
DEVICE,
MAX_LENGTH,
).to(DEVICE)
loss_f = nn.CrossEntropyLoss(ignore_index=TRG_PAD_INDX)
optimizer = torch.optim.Adam(transformer.parameters(), LEARNING_RATE, betas=(0.9, 0.98), eps=1e-9)
train(transformer, loss_f, optimizer, train_iter, valid_iter)
# save checkpoint
checkpoint = {
"state_dict": transformer.state_dict(),
"optimizer": optimizer.state_dict(),
}
torch.save(checkpoint, "checkpoint.pth")