-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_centernet.py
146 lines (115 loc) · 4.9 KB
/
train_centernet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
import argparse
from torch import Tensor
import albumentations as A
import cv2
import torch
import torch.backends.cudnn as cudnn
import torch.optim
from torch.utils.data import DataLoader
from pytorch_models_imp.detectors.centernet.centernet import CenterNet
from pytorch_models_imp.detectors.centernet.datasets import VOCDataset
from pytorch_models_imp.detectors.centernet.loss import Loss
from pytorch_models_imp.detectors.centernet.utils import get_linear_schedule_with_warmup
DATASET_ROOT = "data/VOCdevkit/VOC2012"
cudnn.benchmark = True
IMAGE_SIZE = 512
DEVICE = "cuda:0"
DEFAULT_MEAN = (0.5, 0.5, 0.5)
DEFAULT_STD = (0.5, 0.5, 0.5)
TRAIN_INPUT_SIZE = (IMAGE_SIZE, IMAGE_SIZE)
TEST_INPUT_SIZE = (IMAGE_SIZE, IMAGE_SIZE)
LEARNING_RATE = 0.02
EPOCHS = 300
WEIGHT_DECAY = 0.0
def parse_args():
parser = argparse.ArgumentParser(description="Train script")
parser.add_argument("--epochs", type=int, help="Number of epochs")
parser.add_argument("--learning_rate", type=float, help="Learning rate")
parser.add_argument("--batch_size", default=16, type=int, help="Number of batches")
parser.add_argument("--num_workers", default=3, type=int, help="Number of workers")
parser.add_argument("--device", default="cuda:0", type=str, help="Device")
return parser.parse_args()
def get_augmentations(max_size):
transform = A.Compose(
[
# A.Normalize(),
A.LongestMaxSize(max_size=max_size),
A.PadIfNeeded(
min_height=max_size, min_width=max_size, border_mode=cv2.BORDER_CONSTANT
),
],
bbox_params=A.BboxParams(
format="pascal_voc", min_visibility=0.5, label_fields=["class_labels"]
),
)
return transform
def create_dataloders(root, max_size, batch_size, num_workers):
transform = get_augmentations(max_size)
voc_train = VOCDataset(root, transform)
voc_train.cut_dataset_by(0, 1000)
print(voc_train.objects)
train_dataloader = DataLoader(
voc_train,
batch_size=batch_size,
num_workers=num_workers,
collate_fn=voc_train.collate_fn,
pin_memory=True,
persistent_workers=True,
drop_last=False
)
voc_validation = VOCDataset(root, transform)
voc_validation.cut_dataset_by(0, 1000)
val_dataloader = DataLoader(
voc_validation,
batch_size=batch_size,
num_workers=num_workers,
collate_fn=voc_validation.collate_fn,
pin_memory=True,
persistent_workers=True,
)
return train_dataloader, val_dataloader
if __name__ == "__main__":
args = parse_args()
device = args.device
train_dataloader, validation_dataloader = create_dataloders(
DATASET_ROOT, IMAGE_SIZE, args.batch_size, args.num_workers
)
center_net = CenterNet(encoder_name='resnet50').to(device)
losser = Loss().to(device)
# optimizer = torch.optim.AdamW(
# center_net.parameters(), lr=LEARNING_RATE, weight_decay=WEIGHT_DECAY
# )
optimizer = torch.optim.SGD(center_net.parameters(), lr=LEARNING_RATE, weight_decay=WEIGHT_DECAY)
total_steps = len(train_dataloader) * EPOCHS
scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=total_steps*0.1, num_training_steps=total_steps)
for epoch in range(EPOCHS):
train_loss = 0
validation_loss = 0
center_net = center_net.train()
for tr_counter, batch in enumerate(train_dataloader, 1):
images, targets = batch
images = images.to(device)
targets = {k: v.to(device) if isinstance(v, torch.Tensor) else v for k, v in targets.items()}
optimizer.zero_grad()
output = center_net(images)
losses = losser(output, targets)
loss = sum(losses.values())
loss.backward()
torch.nn.utils.clip_grad_norm_(center_net.parameters(), max_norm=32)
# print(list(optimizer.param_groups)[0]['lr'])
optimizer.step()
scheduler.step()
train_loss += loss.item()
# print(f"center heatmap: {losses['loss_center_heatmap']:.5f}. loss_wh: {losses['loss_wh']:.5f}. loss_offset: {losses['loss_offset']:.5f}")
center_net = center_net.eval()
for val_counter, batch in enumerate(validation_dataloader, 1):
images, targets = batch
images = images.to(device)
targets = {k: v.to(device) if isinstance(v, torch.Tensor) else v for k, v in targets.items()}
with torch.no_grad():
output = center_net(images)
losses = losser(output, targets)
loss = losses['loss_center_heatmap'] + losses['loss_wh'] + losses['loss_offset']
validation_loss += loss.item()
print(f"Epoch: [{epoch}]. Loss: {(train_loss):4f}\{(validation_loss):4f}. LR: {scheduler.get_last_lr()[0]}")
torch.save(center_net, f"prod_models/centernet_loss_{train_loss}.mdl")