-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_detection.py
199 lines (159 loc) · 6.02 KB
/
train_detection.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
import argparse
import os
import PIL
import timm
import torch
import torch.backends.cudnn as cudnn
import torch.nn as nn
import torchvision
from pytorch_models_imp.datasets.penn_funn import PennFudanDataset
from pytorch_models_imp.detr import DETR, PositionEncoder, HungarianMatcher, DetrLoss
import albumentations as A
cudnn.benchmark = True
IMAGE_SIZE = 224
DEVICE = "cuda:0"
DEFAULT_MEAN = (0.5, 0.5, 0.5)
DEFAULT_STD = (0.5, 0.5, 0.5)
TRAIN_INPUT_SIZE = (224, 224)
TEST_INPUT_SIZE = (224, 224)
# transformer
HEADS = 8
DROPOUT = 0
NUM_ENCODER_LAYERS = 3
NUM_DECODER_LAYERS = 3
NUM_QUERIES = 10
HIDDEN_DIM = 256
USE_TIMM = True
def parse_args():
parser = argparse.ArgumentParser(description="Train script")
parser.add_argument("--epochs", type=int, help="Number of epochs")
parser.add_argument("--total_steps", type=int, help="Number of steps")
parser.add_argument("--learning_rate", type=float, help="Learning rate")
parser.add_argument("--model_name", type=str, help="Timm model name")
parser.add_argument(
"--root", default="./data", type=str, help="Root to save images"
)
parser.add_argument("--batch_size", default=512, type=int, help="Number of batches")
parser.add_argument("--num_workers", default=3, type=int, help="Number of workers")
parser.add_argument("--device", default="cuda:0", type=str, help="Device")
return parser.parse_args()
def save_model(name, model):
# state = {"net": model.state_dict()}
output_folder = "model_outputs/detection_transforer"
if not os.path.isdir(output_folder):
os.mkdir(output_folder)
torch.save(model, os.path.join(output_folder, name))
def create_datasetloader(root, batch_size, num_workers):
transform_train = A.Compose(
[
A.Resize(IMAGE_SIZE, IMAGE_SIZE),
A.HorizontalFlip(p=0.5),
],
bbox_params=A.BboxParams(format="pascal_voc", label_fields=["class_labels"]),
)
transform_test = A.Compose(
[
A.Resize(IMAGE_SIZE, IMAGE_SIZE),
],
bbox_params=A.BboxParams(format="pascal_voc", label_fields=["class_labels"]),
)
imgs_list = list(sorted(os.listdir(os.path.join(root, "PNGImages"))))[:100]
masks_list = list(sorted(os.listdir(os.path.join(root, "PedMasks"))))[:100]
k = 0.7
train_part = int(len(imgs_list) * k)
train_imgs, train_masks = imgs_list[:train_part], masks_list[:train_part]
val_imgs, val_masks = imgs_list[train_part:], masks_list[train_part:]
train_dataset = PennFudanDataset(root, train_imgs, train_masks, transform_train)
val_dataset = PennFudanDataset(root, val_imgs, val_masks, transform_test)
train_loader = torch.utils.data.DataLoader(
train_dataset,
batch_size=batch_size,
shuffle=True,
num_workers=num_workers,
pin_memory=False,
persistent_workers=True,
collate_fn=train_dataset.collate_fn
)
val_loader = torch.utils.data.DataLoader(
val_dataset,
batch_size=batch_size,
shuffle=False,
num_workers=num_workers,
pin_memory=False,
persistent_workers=True,
collate_fn=val_dataset.collate_fn
)
return train_loader, val_loader
if __name__ == "__main__":
args = parse_args()
device = args.device
epochs = args.epochs
total_steps = args.total_steps
train_loader, val_loader = create_datasetloader(
args.root, args.batch_size, args.num_workers
)
# num_classes = len(train_loader.dataset.classes)
num_classes = 1
detr = DETR(num_classes, NUM_QUERIES, HIDDEN_DIM, HEADS, NUM_ENCODER_LAYERS, NUM_DECODER_LAYERS, DROPOUT)
matcher = HungarianMatcher()
losses = DetrLoss(matcher, num_classes, eos_coef=0.1, losses=['labels', 'boxes'])
optimizer = torch.optim.AdamW(
detr.parameters(), args.learning_rate, weight_decay=1e-4
)
pct_start = 0.05
# scheduler = torch.optim.lr_scheduler.OneCycleLR(
# optimizer,
# pct_start=pct_start,
# total_steps=total_steps,
# max_lr=args.learning_rate,
# # steps_per_epoch=len(train_loader),
# # epochs=args.epochs,
# )
# print(
# f"There is {total_steps} steps. For warmup there is {total_steps * pct_start} steps"
# )
# epochs = int(total_steps / len(train_loader))
# print(
# f"It will take {epochs} epochs for {total_steps} steps with {len(train_loader)} step"
# )
detr.to(device)
# detr = nn.DataParallel(detr)
for epoch in range(epochs):
train_metric = 0
val_metric = 0
val_accuracy = 0
val_total = 0
for train_step, (images, targets) in enumerate(train_loader, 1):
detr.train()
images = images.to(device)
for indx, target in enumerate(targets):
targets[indx] = {k: v.to(device) for k, v in target.items()}
out = detr(images)
optimizer.zero_grad()
loss = losses(out, targets)
loss = sum(loss.values())
torch.nn.utils.clip_grad_norm_(detr.parameters(), max_norm=1)
train_metric += loss.item()
loss.backward()
optimizer.step()
for val_step, (images, targets) in enumerate(val_loader, 1):
detr.eval()
images = images.to(device)
for indx, target in enumerate(targets):
targets[indx] = {k: v.to(device) for k, v in target.items()}
with torch.no_grad():
out = detr(images)
loss = losses(out, targets)
loss = sum(loss.values())
# predict = out.argmax(dim=1)
# val_accuracy += (predict == targets).sum().item()
# val_total += targets.size(0)
val_metric += loss.item()
train_loss = train_metric / train_step
val_loss = val_metric / val_step
# accuracy = val_accuracy / val_total
print(
f"[{epoch}]. Train loss: {train_loss:.4f}\
Validation loss: {val_loss:.4f}"
)
save_model("transformer_model", detr)