-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_vision.py
211 lines (180 loc) · 6.3 KB
/
train_vision.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
import argparse
import os
import PIL
import timm
import torch
import torch.backends.cudnn as cudnn
import torch.nn as nn
import torchvision
import torchvision.transforms as transforms
from pytorch_models_imp.visual_transformer import VisionTransformer
from torchinfo import summary
cudnn.benchmark = True
IMAGE_SIZE = 224
DEVICE = "cuda:0"
DEFAULT_MEAN = (0.5, 0.5, 0.5)
DEFAULT_STD = (0.5, 0.5, 0.5)
TRAIN_INPUT_SIZE = (224, 224)
TEST_INPUT_SIZE = (224, 224)
# transformer
FORWARD_EXPANSION = 4
NUM_LAYERS = 6
HEADS = 3
PATCH_SIZE = 16
EMBEDDING_SIZE = 192
DROPOUT = 0.1
USE_TIMM = True
def parse_args():
parser = argparse.ArgumentParser(description="Train script")
parser.add_argument("--epochs", type=int, help="Number of epochs")
parser.add_argument("--total_steps", type=int, help="Number of steps")
parser.add_argument("--learning_rate", type=float, help="Learning rate")
parser.add_argument("--model_name", type=str, help="Timm model name")
parser.add_argument(
"--root", default="./data", type=str, help="Root to save images"
)
parser.add_argument("--batch_size", default=512, type=int, help="Number of batches")
parser.add_argument("--num_workers", default=3, type=int, help="Number of workers")
parser.add_argument("--device", default="cuda:0", type=str, help="Device")
return parser.parse_args()
def create_datasetloader(is_train, shuffle, root, transform, batch_size, num_workers):
imageset = torchvision.datasets.CIFAR100(
root=root, train=is_train, download=True, transform=transform
)
loader = torch.utils.data.DataLoader(
imageset,
batch_size=batch_size,
shuffle=shuffle,
num_workers=num_workers,
pin_memory=True,
persistent_workers=False,
)
return loader
def save_model(name, model, accuracy):
state = {"net": model.state_dict(), "acc": accuracy}
output_folder = "model_outputs/cifar_transforer"
if not os.path.isdir(output_folder):
os.mkdir(output_folder)
torch.save(state, os.path.join(output_folder, name))
if __name__ == "__main__":
args = parse_args()
device = args.device
epochs = args.epochs
total_steps = args.total_steps
transform_train = transforms.Compose(
[
transforms.Resize(size=256, interpolation=PIL.Image.BICUBIC),
transforms.CenterCrop(size=TRAIN_INPUT_SIZE),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize(mean=DEFAULT_MEAN, std=DEFAULT_STD),
]
)
transform_test = transforms.Compose(
[
transforms.Resize(size=TEST_INPUT_SIZE, interpolation=PIL.Image.BICUBIC),
transforms.ToTensor(),
transforms.Normalize(mean=DEFAULT_MEAN, std=DEFAULT_STD),
]
)
train_loader = create_datasetloader(
is_train=True,
shuffle=True,
root=args.root,
transform=transform_train,
batch_size=args.batch_size,
num_workers=args.num_workers,
)
test_loader = create_datasetloader(
is_train=False,
shuffle=False,
root=args.root,
transform=transform_test,
batch_size=args.batch_size,
num_workers=args.num_workers,
)
num_classes = len(train_loader.dataset.classes)
if not args.model_name.startswith("my"):
vision_transformer = timm.create_model(
args.model_name, pretrained=True, num_classes=num_classes
)
else:
vision_transformer = VisionTransformer(
IMAGE_SIZE,
num_classes,
PATCH_SIZE,
HEADS,
EMBEDDING_SIZE,
FORWARD_EXPANSION,
NUM_LAYERS,
DROPOUT,
)
summary(
vision_transformer, input_size=(args.batch_size, 3, IMAGE_SIZE, IMAGE_SIZE)
)
loss_f = nn.CrossEntropyLoss()
# optimizer = torch.optim.AdamW(
# vision_transformer.parameters(), args.learning_rate, weight_decay=1e-5
# )
optimizer = torch.optim.SGD(
vision_transformer.parameters(),
lr=args.learning_rate,
momentum=0.9,
weight_decay=1e-5,
)
pct_start = 0.05
scheduler = torch.optim.lr_scheduler.OneCycleLR(
optimizer,
pct_start=pct_start,
total_steps=total_steps,
max_lr=args.learning_rate,
# steps_per_epoch=len(train_loader),
# epochs=args.epochs,
)
print(
f"There is {total_steps} steps. For warmup there is {total_steps * pct_start} steps"
)
epochs = int(total_steps / len(train_loader))
print(
f"It will take {epochs} epochs for {total_steps} steps with {len(train_loader)} step"
)
vision_transformer.to(device)
vision_transformer = nn.DataParallel(vision_transformer)
for epoch in range(epochs):
train_metric = 0
val_metric = 0
val_accuracy = 0
val_total = 0
for train_step, (images, targets) in enumerate(train_loader, 1):
vision_transformer.train()
images = images.to(device)
targets = targets.to(device)
out = vision_transformer(images)
optimizer.zero_grad()
loss = loss_f(out, targets)
torch.nn.utils.clip_grad_norm_(vision_transformer.parameters(), max_norm=1)
train_metric += loss.item()
loss.backward()
optimizer.step()
scheduler.step()
for val_step, (images, targets) in enumerate(test_loader, 1):
vision_transformer.eval()
images = images.to(device)
targets = targets.to(device)
with torch.no_grad():
out = vision_transformer(images)
loss = loss_f(out, targets)
predict = out.argmax(dim=1)
val_accuracy += (predict == targets).sum().item()
val_total += targets.size(0)
val_metric += loss.item()
train_loss = train_metric / train_step
val_loss = val_metric / val_step
accuracy = val_accuracy / val_total
print(
f"[{epoch}]. Train loss: {train_loss:.4f}\
Validation loss: {val_loss:.4f}\
Validation accuracy: {accuracy}"
)
save_name = f"{args.model_name}_{args.learning_rate}_{accuracy}.pthar"
save_model(save_name, vision_transformer, accuracy)