-
Notifications
You must be signed in to change notification settings - Fork 154
/
Copy pathCITATION.bib
42 lines (42 loc) · 1.71 KB
/
CITATION.bib
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
@article{batzner20223,
title={E(3)-equivariant graph neural networks for data-efficient and accurate interatomic potentials},
author={Batzner, Simon and Musaelian, Albert and Sun, Lixin and Geiger, Mario and Mailoa, Jonathan P and Kornbluth, Mordechai and Molinari, Nicola and Smidt, Tess E and Kozinsky, Boris},
journal={Nature communications},
volume={13},
number={1},
pages={2453},
year={2022},
publisher={Nature Publishing Group UK London}
}
@inproceedings{kozinsky2023scaling,
title={Scaling the leading accuracy of deep equivariant models to biomolecular simulations of realistic size},
author={Kozinsky, Boris and Musaelian, Albert and Johansson, Anders and Batzner, Simon},
booktitle={Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis},
pages={1--12},
year={2023}
}
@article{musaelian2023learning,
title={Learning local equivariant representations for large-scale atomistic dynamics},
author={Musaelian, Albert and Batzner, Simon and Johansson, Anders and Sun, Lixin and Owen, Cameron J and Kornbluth, Mordechai and Kozinsky, Boris},
journal={Nature Communications},
volume={14},
number={1},
pages={579},
year={2023},
publisher={Nature Publishing Group UK London}
}
@article{zhu2023fast,
title={Fast uncertainty estimates in deep learning interatomic potentials},
author={Zhu, Albert and Batzner, Simon and Musaelian, Albert and Kozinsky, Boris},
journal={The Journal of Chemical Physics},
volume={158},
number={16},
year={2023},
publisher={AIP Publishing}
}
@article{geiger2022e3nn,
title={e3nn: Euclidean neural networks},
author={Geiger, Mario and Smidt, Tess},
journal={arXiv preprint arXiv:2207.09453},
year={2022}
}