-
Notifications
You must be signed in to change notification settings - Fork 112
Open
Labels
bugSomething isn't workingSomething isn't working
Description
Python -VV
from vllm collect_env.py
<details>
<summary>The output of <code>python collect_env.py</code></summary>
==============================
System Info
==============================
OS : Ubuntu 24.04.1 LTS (x86_64)
GCC version : (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0
Clang version : Could not collect
CMake version : version 3.28.3
Libc version : glibc-2.39
==============================
PyTorch Info
==============================
PyTorch version : 2.7.0+cu128
Is debug build : False
CUDA used to build PyTorch : 12.8
ROCM used to build PyTorch : N/A
==============================
Python Environment
==============================
Python version : 3.12.3 (main, Feb 4 2025, 14:48:35) [GCC 13.3.0] (64-bit runtime)
Python platform : Linux-6.15.2-arch1-1-x86_64-with-glibc2.39
==============================
CUDA / GPU Info
==============================
Is CUDA available : False
CUDA runtime version : 12.8.93
CUDA_MODULE_LOADING set to : N/A
GPU models and configuration : Could not collect
Nvidia driver version : Could not collect
cuDNN version : Probably one of the following:
/usr/lib/x86_64-linux-gnu/libcudnn.so.9.8.0
/usr/lib/x86_64-linux-gnu/libcudnn_adv.so.9.8.0
/usr/lib/x86_64-linux-gnu/libcudnn_cnn.so.9.8.0
/usr/lib/x86_64-linux-gnu/libcudnn_engines_precompiled.so.9.8.0
/usr/lib/x86_64-linux-gnu/libcudnn_engines_runtime_compiled.so.9.8.0
/usr/lib/x86_64-linux-gnu/libcudnn_graph.so.9.8.0
/usr/lib/x86_64-linux-gnu/libcudnn_heuristic.so.9.8.0
/usr/lib/x86_64-linux-gnu/libcudnn_ops.so.9.8.0
HIP runtime version : N/A
MIOpen runtime version : N/A
Is XNNPACK available : True
==============================
CPU Info
==============================
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Address sizes: 48 bits physical, 48 bits virtual
Byte Order: Little Endian
CPU(s): 32
On-line CPU(s) list: 0-31
Vendor ID: AuthenticAMD
Model name: AMD Ryzen 9 9950X 16-Core Processor
CPU family: 26
Model: 68
Thread(s) per core: 2
Core(s) per socket: 16
Socket(s): 1
Stepping: 0
Frequency boost: enabled
CPU(s) scaling MHz: 71%
CPU max MHz: 5756.4521
CPU min MHz: 624.1940
BogoMIPS: 8583.31
Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good amd_lbr_v2 nopl xtopology nonstop_tsc cpuid extd_apicid aperfmperf rapl pni pclmulqdq monitor ssse3 fma cx16 sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_llc mwaitx cpb cat_l3 cdp_l3 hw_pstate ssbd mba perfmon_v2 ibrs ibpb stibp ibrs_enhanced vmmcall fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid cqm rdt_a avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local user_shstk avx_vnni avx512_bf16 clzero irperf xsaveerptr rdpru wbnoinvd cppc arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold avic v_vmsave_vmload vgif x2avic v_spec_ctrl vnmi avx512vbmi umip pku ospke avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg avx512_vpopcntdq rdpid bus_lock_detect movdiri movdir64b overflow_recov succor smca fsrm avx512_vp2intersect flush_l1d amd_lbr_pmc_freeze
Virtualization: AMD-V
L1d cache: 768 KiB (16 instances)
L1i cache: 512 KiB (16 instances)
L2 cache: 16 MiB (16 instances)
L3 cache: 64 MiB (2 instances)
NUMA node(s): 1
NUMA node0 CPU(s): 0-31
Vulnerability Gather data sampling: Not affected
Vulnerability Ghostwrite: Not affected
Vulnerability Indirect target selection: Not affected
Vulnerability Itlb multihit: Not affected
Vulnerability L1tf: Not affected
Vulnerability Mds: Not affected
Vulnerability Meltdown: Not affected
Vulnerability Mmio stale data: Not affected
Vulnerability Reg file data sampling: Not affected
Vulnerability Retbleed: Not affected
Vulnerability Spec rstack overflow: Mitigation; IBPB on VMEXIT only
Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl
Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB conditional; STIBP always-on; PBRSB-eIBRS Not affected; BHI Not affected
Vulnerability Srbds: Not affected
Vulnerability Tsx async abort: Not affected
==============================
Versions of relevant libraries
==============================
[pip3] numpy==2.2.6
[pip3] nvidia-cublas-cu12==12.8.3.14
[pip3] nvidia-cuda-cupti-cu12==12.8.57
[pip3] nvidia-cuda-nvrtc-cu12==12.8.61
[pip3] nvidia-cuda-runtime-cu12==12.8.57
[pip3] nvidia-cudnn-cu12==9.7.1.26
[pip3] nvidia-cufft-cu12==11.3.3.41
[pip3] nvidia-cufile-cu12==1.13.0.11
[pip3] nvidia-curand-cu12==10.3.9.55
[pip3] nvidia-cusolver-cu12==11.7.2.55
[pip3] nvidia-cusparse-cu12==12.5.7.53
[pip3] nvidia-cusparselt-cu12==0.6.3
[pip3] nvidia-ml-py==12.575.51
[pip3] nvidia-nccl-cu12==2.26.2
[pip3] nvidia-nvjitlink-cu12==12.8.61
[pip3] nvidia-nvshmem-cu12==3.2.5
[pip3] nvidia-nvtx-cu12==12.8.55
[pip3] pynvml==12.0.0
[pip3] pyzmq==27.0.0
[pip3] torch==2.7.0+cu128
[pip3] torchaudio==2.7.0+cu128
[pip3] torchvision==0.22.0+cu128
[pip3] transformers==4.52.4
[pip3] triton==3.3.0
[conda] Could not collect
==============================
vLLM Info
==============================
ROCM Version : Could not collect
Neuron SDK Version : N/A
vLLM Version : 0.9.2.dev247+g0f9e7354f.d20250625 (git sha: 0f9e7354f, date: 20250625)
vLLM Build Flags:
CUDA Archs: 12.0; ROCm: Disabled; Neuron: Disabled
GPU Topology:
Could not collect
==============================
Environment Variables
==============================
NVIDIA_VISIBLE_DEVICES=all
NVIDIA_REQUIRE_CUDA=cuda>=12.8 brand=unknown,driver>=470,driver<471 brand=grid,driver>=470,driver<471 brand=tesla,driver>=470,driver<471 brand=nvidia,driver>=470,driver<471 brand=quadro,driver>=470,driver<471 brand=quadrortx,driver>=470,driver<471 brand=nvidiartx,driver>=470,driver<471 brand=vapps,driver>=470,driver<471 brand=vpc,driver>=470,driver<471 brand=vcs,driver>=470,driver<471 brand=vws,driver>=470,driver<471 brand=cloudgaming,driver>=470,driver<471 brand=unknown,driver>=535,driver<536 brand=grid,driver>=535,driver<536 brand=tesla,driver>=535,driver<536 brand=nvidia,driver>=535,driver<536 brand=quadro,driver>=535,driver<536 brand=quadrortx,driver>=535,driver<536 brand=nvidiartx,driver>=535,driver<536 brand=vapps,driver>=535,driver<536 brand=vpc,driver>=535,driver<536 brand=vcs,driver>=535,driver<536 brand=vws,driver>=535,driver<536 brand=cloudgaming,driver>=535,driver<536 brand=unknown,driver>=550,driver<551 brand=grid,driver>=550,driver<551 brand=tesla,driver>=550,driver<551 brand=nvidia,driver>=550,driver<551 brand=quadro,driver>=550,driver<551 brand=quadrortx,driver>=550,driver<551 brand=nvidiartx,driver>=550,driver<551 brand=vapps,driver>=550,driver<551 brand=vpc,driver>=550,driver<551 brand=vcs,driver>=550,driver<551 brand=vws,driver>=550,driver<551 brand=cloudgaming,driver>=550,driver<551 brand=unknown,driver>=560,driver<561 brand=grid,driver>=560,driver<561 brand=tesla,driver>=560,driver<561 brand=nvidia,driver>=560,driver<561 brand=quadro,driver>=560,driver<561 brand=quadrortx,driver>=560,driver<561 brand=nvidiartx,driver>=560,driver<561 brand=vapps,driver>=560,driver<561 brand=vpc,driver>=560,driver<561 brand=vcs,driver>=560,driver<561 brand=vws,driver>=560,driver<561 brand=cloudgaming,driver>=560,driver<561 brand=unknown,driver>=565,driver<566 brand=grid,driver>=565,driver<566 brand=tesla,driver>=565,driver<566 brand=nvidia,driver>=565,driver<566 brand=quadro,driver>=565,driver<566 brand=quadrortx,driver>=565,driver<566 brand=nvidiartx,driver>=565,driver<566 brand=vapps,driver>=565,driver<566 brand=vpc,driver>=565,driver<566 brand=vcs,driver>=565,driver<566 brand=vws,driver>=565,driver<566 brand=cloudgaming,driver>=565,driver<566
TORCH_CUDA_ARCH_LIST=12.0
NCCL_VERSION=2.25.1-1
CMAKE_BUILD_TYPE=Release
NVIDIA_DRIVER_CAPABILITIES=compute,utility
NVCC_THREADS=8
NVIDIA_PRODUCT_NAME=CUDA
NVIDIA_CPU_ONLY=1
CUDA_VERSION=12.8.1
MAX_JOBS=8
VLLM_FLASH_ATTN_VERSION=2
LD_LIBRARY_PATH=/usr/local/cuda/lib64
CUDA_HOME=/usr/local/cuda
CUDA_HOME=/usr/local/cuda
NCCL_CUMEM_ENABLE=0
PYTORCH_NVML_BASED_CUDA_CHECK=1
TORCHINDUCTOR_COMPILE_THREADS=1
</details>Pip Freeze
.Reproduction Steps
vllm serve "${MODEL}" \
--port "${VLLM_PORT}" \
--trust-remote-code \
--gpu-memory-utilization 0.95 \
--served-model-name "${MODELNAME}" \
--enable-prefix-caching \
--enable-chunked-prefill \
--max-model-len "${MODEL_LEN}" \
--max_num_seqs 64 \
--tokenizer_mode mistral \
--generation-config "${MODEL}" \
--enable-auto-tool-choice \
--tool-call-parser mistral
Expected Behavior
The command is crashing with a incompatibility with huggingface/transformers
AttributeError: 'MistralTokenizer' object has no attribute 'init_kwargs'
The property is expected here: https://github.com/huggingface/transformers/blob/v4.52.4/src/transformers/models/pixtral/processing_pixtral.py#L156
This is with mistral_common==1.6.2 and vllm commit 0f9e7354f508af3fe314cfb709babaaa668f1b04 built from source on 2025-06-25.
Tekkenizer v11 is used but it seems like the image handling has a different tokenizer.
Full backtrace:
.2-24B.w4a16-gptq', 'tokenizer_mode': 'mistral', 'trust_remote_code': True, 'max_model_len': 92500, 'served_model_name': ['mistral3.2-24b'], 'generation_config': '/workspace/local_models/Mistral-3.2-24B.w4a16-gptq', 'gpu_memory_utilization': 0.95, 'enable_prefix_caching': True, 'max_num_seqs': 64, 'enable_chunked_prefill': True}
INFO 06-25 15:47:53 [config.py:839] This model supports multiple tasks: {'reward', 'score', 'generate', 'embed', 'classify'}. Defaulting to 'generate'.
INFO 06-25 15:47:53 [config.py:1453] Using max model len 92500
INFO 06-25 15:47:54 [config.py:2197] Chunked prefill is enabled with max_num_batched_tokens=2048.
INFO 06-25 15:47:56 [__init__.py:244] Automatically detected platform cuda.
INFO 06-25 15:47:57 [core.py:459] Waiting for init message from front-end.
INFO 06-25 15:47:57 [core.py:69] Initializing a V1 LLM engine (v0.9.2.dev247+g0f9e7354f.d20250625) with config: model='/workspace/local_models/Mistral-3.2-24B.w4a16-gptq', speculative_config=None, tokenizer='/workspace/local_models/Mistral-3.2-24B.w4a16-gptq', skip_tokenizer_init=False, tokenizer_mode=mistral, revision=None, override_neuron_config={}, tokenizer_revision=None, trust_remote_code=True, dtype=torch.bfloat16, max_seq_len=92500, download_dir=None, load_format=LoadFormat.AUTO, tensor_parallel_size=1, pipeline_parallel_size=1, disable_custom_all_reduce=False, quantization=compressed-tensors, enforce_eager=False, kv_cache_dtype=auto, device_config=cuda, decoding_config=DecodingConfig(backend='auto', disable_fallback=False, disable_any_whitespace=False, disable_additional_properties=False, reasoning_backend=''), observability_config=ObservabilityConfig(show_hidden_metrics_for_version=None, otlp_traces_endpoint=None, collect_detailed_traces=None), seed=0, served_model_name=mistral3.2-24b, num_scheduler_steps=1, multi_step_stream_outputs=True, enable_prefix_caching=True, chunked_prefill_enabled=True, use_async_output_proc=True, pooler_config=None, compilation_config={"level":3,"debug_dump_path":"","cache_dir":"","backend":"","custom_ops":["none"],"splitting_ops":["vllm.unified_attention","vllm.unified_attention_with_output"],"use_inductor":true,"compile_sizes":[],"inductor_compile_config":{"enable_auto_functionalized_v2":false},"inductor_passes":{},"use_cudagraph":true,"cudagraph_num_of_warmups":1,"cudagraph_capture_sizes":[512,504,496,488,480,472,464,456,448,440,432,424,416,408,400,392,384,376,368,360,352,344,336,328,320,312,304,296,288,280,272,264,256,248,240,232,224,216,208,200,192,184,176,168,160,152,144,136,128,120,112,104,96,88,80,72,64,56,48,40,32,24,16,8,4,2,1],"cudagraph_copy_inputs":false,"full_cuda_graph":false,"max_capture_size":512,"local_cache_dir":null}
WARNING 06-25 15:47:57 [utils.py:2753] Methods determine_num_available_blocks,device_config,get_cache_block_size_bytes not implemented in <vllm.v1.worker.gpu_worker.Worker object at 0x7fdf7dde3c50>
INFO 06-25 15:47:58 [parallel_state.py:1072] rank 0 in world size 1 is assigned as DP rank 0, PP rank 0, TP rank 0, EP rank 0
ERROR 06-25 15:47:59 [core.py:519] EngineCore failed to start.
ERROR 06-25 15:47:59 [core.py:519] Traceback (most recent call last):
ERROR 06-25 15:47:59 [core.py:519] File "/workspace/vllm/vllm/inputs/registry.py", line 169, in call_hf_processor
ERROR 06-25 15:47:59 [core.py:519] output = hf_processor(**data, **merged_kwargs, return_tensors="pt")
ERROR 06-25 15:47:59 [core.py:519] ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
ERROR 06-25 15:47:59 [core.py:519] File "/usr/local/lib/python3.12/dist-packages/transformers/models/pixtral/processing_pixtral.py", line 156, in __call__
ERROR 06-25 15:47:59 [core.py:519] tokenizer_init_kwargs=self.tokenizer.init_kwargs,
ERROR 06-25 15:47:59 [core.py:519] ^^^^^^^^^^^^^^^^^^^^^^^^^^
ERROR 06-25 15:47:59 [core.py:519] AttributeError: 'MistralTokenizer' object has no attribute 'init_kwargs'
ERROR 06-25 15:47:59 [core.py:519]
ERROR 06-25 15:47:59 [core.py:519] The above exception was the direct cause of the following exception:
ERROR 06-25 15:47:59 [core.py:519]
ERROR 06-25 15:47:59 [core.py:519] Traceback (most recent call last):
ERROR 06-25 15:47:59 [core.py:519] File "/workspace/vllm/vllm/v1/engine/core.py", line 510, in run_engine_core
ERROR 06-25 15:47:59 [core.py:519] engine_core = EngineCoreProc(*args, **kwargs)
ERROR 06-25 15:47:59 [core.py:519] ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
ERROR 06-25 15:47:59 [core.py:519] File "/workspace/vllm/vllm/v1/engine/core.py", line 394, in __init__
ERROR 06-25 15:47:59 [core.py:519] super().__init__(vllm_config, executor_class, log_stats,
ERROR 06-25 15:47:59 [core.py:519] File "/workspace/vllm/vllm/v1/engine/core.py", line 75, in __init__
ERROR 06-25 15:47:59 [core.py:519] self.model_executor = executor_class(vllm_config)
ERROR 06-25 15:47:59 [core.py:519] ^^^^^^^^^^^^^^^^^^^^^^^^^^^
ERROR 06-25 15:47:59 [core.py:519] File "/workspace/vllm/vllm/executor/executor_base.py", line 53, in __init__
ERROR 06-25 15:47:59 [core.py:519] self._init_executor()
ERROR 06-25 15:47:59 [core.py:519] File "/workspace/vllm/vllm/executor/uniproc_executor.py", line 47, in _init_executor
ERROR 06-25 15:47:59 [core.py:519] self.collective_rpc("init_device")
ERROR 06-25 15:47:59 [core.py:519] File "/workspace/vllm/vllm/executor/uniproc_executor.py", line 57, in collective_rpc
ERROR 06-25 15:47:59 [core.py:519] answer = run_method(self.driver_worker, method, args, kwargs)
ERROR 06-25 15:47:59 [core.py:519] ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
ERROR 06-25 15:47:59 [core.py:519] File "/workspace/vllm/vllm/utils.py", line 2687, in run_method
ERROR 06-25 15:47:59 [core.py:519] return func(*args, **kwargs)
ERROR 06-25 15:47:59 [core.py:519] ^^^^^^^^^^^^^^^^^^^^^
ERROR 06-25 15:47:59 [core.py:519] File "/workspace/vllm/vllm/worker/worker_base.py", line 606, in init_device
ERROR 06-25 15:47:59 [core.py:519] self.worker.init_device() # type: ignore
ERROR 06-25 15:47:59 [core.py:519] ^^^^^^^^^^^^^^^^^^^^^^^^^
ERROR 06-25 15:47:59 [core.py:519] File "/workspace/vllm/vllm/v1/worker/gpu_worker.py", line 165, in init_device
ERROR 06-25 15:47:59 [core.py:519] self.model_runner: GPUModelRunner = GPUModelRunner(
ERROR 06-25 15:47:59 [core.py:519] ^^^^^^^^^^^^^^^
ERROR 06-25 15:47:59 [core.py:519] File "/workspace/vllm/vllm/v1/worker/gpu_model_runner.py", line 142, in __init__
ERROR 06-25 15:47:59 [core.py:519] encoder_compute_budget, encoder_cache_size = compute_encoder_budget(
ERROR 06-25 15:47:59 [core.py:519] ^^^^^^^^^^^^^^^^^^^^^^^
ERROR 06-25 15:47:59 [core.py:519] File "/workspace/vllm/vllm/v1/core/encoder_cache_manager.py", line 199, in compute_encoder_budget
ERROR 06-25 15:47:59 [core.py:519] ) = _compute_encoder_budget_multimodal(
ERROR 06-25 15:47:59 [core.py:519] ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
ERROR 06-25 15:47:59 [core.py:519] File "/workspace/vllm/vllm/v1/core/encoder_cache_manager.py", line 229, in _compute_encoder_budget_multimodal
ERROR 06-25 15:47:59 [core.py:519] .get_max_tokens_per_item_by_nonzero_modality(model_config)
ERROR 06-25 15:47:59 [core.py:519] ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
ERROR 06-25 15:47:59 [core.py:519] File "/workspace/vllm/vllm/multimodal/registry.py", line 158, in get_max_tokens_per_item_by_nonzero_modality
ERROR 06-25 15:47:59 [core.py:519] self.get_max_tokens_per_item_by_modality(model_config).items()
ERROR 06-25 15:47:59 [core.py:519] ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
ERROR 06-25 15:47:59 [core.py:519] File "/workspace/vllm/vllm/multimodal/registry.py", line 132, in get_max_tokens_per_item_by_modality
ERROR 06-25 15:47:59 [core.py:519] return profiler.get_mm_max_tokens(
ERROR 06-25 15:47:59 [core.py:519] ^^^^^^^^^^^^^^^^^^^^^^^^^^^
ERROR 06-25 15:47:59 [core.py:519] File "/workspace/vllm/vllm/multimodal/profiling.py", line 277, in get_mm_max_tokens
ERROR 06-25 15:47:59 [core.py:519] mm_inputs = self._get_dummy_mm_inputs(seq_len, mm_counts)
ERROR 06-25 15:47:59 [core.py:519] ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
ERROR 06-25 15:47:59 [core.py:519] File "/workspace/vllm/vllm/multimodal/profiling.py", line 169, in _get_dummy_mm_inputs
ERROR 06-25 15:47:59 [core.py:519] return self.processor.apply(
ERROR 06-25 15:47:59 [core.py:519] ^^^^^^^^^^^^^^^^^^^^^
ERROR 06-25 15:47:59 [core.py:519] File "/workspace/vllm/vllm/multimodal/processing.py", line 1808, in apply
ERROR 06-25 15:47:59 [core.py:519] ) = self._cached_apply_hf_processor(
ERROR 06-25 15:47:59 [core.py:519] ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
ERROR 06-25 15:47:59 [core.py:519] File "/workspace/vllm/vllm/multimodal/processing.py", line 1574, in _cached_apply_hf_processor
ERROR 06-25 15:47:59 [core.py:519] ) = self._apply_hf_processor_main(
ERROR 06-25 15:47:59 [core.py:519] ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
ERROR 06-25 15:47:59 [core.py:519] File "/workspace/vllm/vllm/multimodal/processing.py", line 1417, in _apply_hf_processor_main
ERROR 06-25 15:47:59 [core.py:519] prompt_ids = self._apply_hf_processor_text_only(prompt)
ERROR 06-25 15:47:59 [core.py:519] ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
ERROR 06-25 15:47:59 [core.py:519] File "/workspace/vllm/vllm/multimodal/processing.py", line 1342, in _apply_hf_processor_text_only
ERROR 06-25 15:47:59 [core.py:519] prompt_ids, _, _ = self._apply_hf_processor_text_mm(
ERROR 06-25 15:47:59 [core.py:519] ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
ERROR 06-25 15:47:59 [core.py:519] File "/workspace/vllm/vllm/multimodal/processing.py", line 1312, in _apply_hf_processor_text_mm
ERROR 06-25 15:47:59 [core.py:519] processed_data = self._call_hf_processor(
ERROR 06-25 15:47:59 [core.py:519] ^^^^^^^^^^^^^^^^^^^^^^^^
ERROR 06-25 15:47:59 [core.py:519] File "/workspace/vllm/vllm/model_executor/models/mistral3.py", line 232, in _call_hf_processor
ERROR 06-25 15:47:59 [core.py:519] processed_outputs = super()._call_hf_processor(
ERROR 06-25 15:47:59 [core.py:519] ^^^^^^^^^^^^^^^^^^^^^^^^^^^
ERROR 06-25 15:47:59 [core.py:519] File "/workspace/vllm/vllm/multimodal/processing.py", line 1275, in _call_hf_processor
ERROR 06-25 15:47:59 [core.py:519] return self.info.ctx.call_hf_processor(
ERROR 06-25 15:47:59 [core.py:519] ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
ERROR 06-25 15:47:59 [core.py:519] File "/workspace/vllm/vllm/inputs/registry.py", line 187, in call_hf_processor
ERROR 06-25 15:47:59 [core.py:519] raise ValueError(msg) from exc
ERROR 06-25 15:47:59 [core.py:519] ValueError: Failed to apply PixtralProcessor on data={'text': '[IMG]'} with kwargs={}
Process EngineCore_0:
Traceback (most recent call last):
File "/workspace/vllm/vllm/inputs/registry.py", line 169, in call_hf_processor
output = hf_processor(**data, **merged_kwargs, return_tensors="pt")
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/dist-packages/transformers/models/pixtral/processing_pixtral.py", line 156, in __call__
tokenizer_init_kwargs=self.tokenizer.init_kwargs,
^^^^^^^^^^^^^^^^^^^^^^^^^^
AttributeError: 'MistralTokenizer' object has no attribute 'init_kwargs'
The above exception was the direct cause of the following exception:
Traceback (most recent call last):
File "/usr/lib/python3.12/multiprocessing/process.py", line 314, in _bootstrap
self.run()
File "/usr/lib/python3.12/multiprocessing/process.py", line 108, in run
self._target(*self._args, **self._kwargs)
File "/workspace/vllm/vllm/v1/engine/core.py", line 523, in run_engine_core
raise e
File "/workspace/vllm/vllm/v1/engine/core.py", line 510, in run_engine_core
engine_core = EngineCoreProc(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/workspace/vllm/vllm/v1/engine/core.py", line 394, in __init__
super().__init__(vllm_config, executor_class, log_stats,
File "/workspace/vllm/vllm/v1/engine/core.py", line 75, in __init__
self.model_executor = executor_class(vllm_config)
^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/workspace/vllm/vllm/executor/executor_base.py", line 53, in __init__
self._init_executor()
File "/workspace/vllm/vllm/executor/uniproc_executor.py", line 47, in _init_executor
self.collective_rpc("init_device")
File "/workspace/vllm/vllm/executor/uniproc_executor.py", line 57, in collective_rpc
answer = run_method(self.driver_worker, method, args, kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/workspace/vllm/vllm/utils.py", line 2687, in run_method
return func(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^
File "/workspace/vllm/vllm/worker/worker_base.py", line 606, in init_device
self.worker.init_device() # type: ignore
^^^^^^^^^^^^^^^^^^^^^^^^^
File "/workspace/vllm/vllm/v1/worker/gpu_worker.py", line 165, in init_device
self.model_runner: GPUModelRunner = GPUModelRunner(
^^^^^^^^^^^^^^^
File "/workspace/vllm/vllm/v1/worker/gpu_model_runner.py", line 142, in __init__
encoder_compute_budget, encoder_cache_size = compute_encoder_budget(
^^^^^^^^^^^^^^^^^^^^^^^
File "/workspace/vllm/vllm/v1/core/encoder_cache_manager.py", line 199, in compute_encoder_budget
) = _compute_encoder_budget_multimodal(
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/workspace/vllm/vllm/v1/core/encoder_cache_manager.py", line 229, in _compute_encoder_budget_multimodal
.get_max_tokens_per_item_by_nonzero_modality(model_config)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/workspace/vllm/vllm/multimodal/registry.py", line 158, in get_max_tokens_per_item_by_nonzero_modality
self.get_max_tokens_per_item_by_modality(model_config).items()
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/workspace/vllm/vllm/multimodal/registry.py", line 132, in get_max_tokens_per_item_by_modality
return profiler.get_mm_max_tokens(
^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/workspace/vllm/vllm/multimodal/profiling.py", line 277, in get_mm_max_tokens
mm_inputs = self._get_dummy_mm_inputs(seq_len, mm_counts)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/workspace/vllm/vllm/multimodal/profiling.py", line 169, in _get_dummy_mm_inputs
return self.processor.apply(
^^^^^^^^^^^^^^^^^^^^^
File "/workspace/vllm/vllm/multimodal/processing.py", line 1808, in apply
) = self._cached_apply_hf_processor(
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/workspace/vllm/vllm/multimodal/processing.py", line 1574, in _cached_apply_hf_processor
) = self._apply_hf_processor_main(
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/workspace/vllm/vllm/multimodal/processing.py", line 1417, in _apply_hf_processor_main
prompt_ids = self._apply_hf_processor_text_only(prompt)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/workspace/vllm/vllm/multimodal/processing.py", line 1342, in _apply_hf_processor_text_only
prompt_ids, _, _ = self._apply_hf_processor_text_mm(
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/workspace/vllm/vllm/multimodal/processing.py", line 1312, in _apply_hf_processor_text_mm
processed_data = self._call_hf_processor(
^^^^^^^^^^^^^^^^^^^^^^^^
File "/workspace/vllm/vllm/model_executor/models/mistral3.py", line 232, in _call_hf_processor
processed_outputs = super()._call_hf_processor(
^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/workspace/vllm/vllm/multimodal/processing.py", line 1275, in _call_hf_processor
return self.info.ctx.call_hf_processor(
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/workspace/vllm/vllm/inputs/registry.py", line 187, in call_hf_processor
raise ValueError(msg) from exc
ValueError: Failed to apply PixtralProcessor on data={'text': '[IMG]'} with kwargs={}
[rank0]:[W625 15:47:59.697775105 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
Traceback (most recent call last):
File "/usr/local/bin/vllm", line 10, in <module>
sys.exit(main())
^^^^^^
File "/workspace/vllm/vllm/entrypoints/cli/main.py", line 65, in main
args.dispatch_function(args)
File "/workspace/vllm/vllm/entrypoints/cli/serve.py", line 55, in cmd
uvloop.run(run_server(args))
File "/usr/local/lib/python3.12/dist-packages/uvloop/__init__.py", line 109, in run
return __asyncio.run(
^^^^^^^^^^^^^^
File "/usr/lib/python3.12/asyncio/runners.py", line 194, in run
return runner.run(main)
^^^^^^^^^^^^^^^^
File "/usr/lib/python3.12/asyncio/runners.py", line 118, in run
return self._loop.run_until_complete(task)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "uvloop/loop.pyx", line 1518, in uvloop.loop.Loop.run_until_complete
File "/usr/local/lib/python3.12/dist-packages/uvloop/__init__.py", line 61, in wrapper
return await main
^^^^^^^^^^
File "/workspace/vllm/vllm/entrypoints/openai/api_server.py", line 1325, in run_server
await run_server_worker(listen_address, sock, args, **uvicorn_kwargs)
File "/workspace/vllm/vllm/entrypoints/openai/api_server.py", line 1345, in run_server_worker
async with build_async_engine_client(args, client_config) as engine_client:
File "/usr/lib/python3.12/contextlib.py", line 210, in __aenter__
return await anext(self.gen)
^^^^^^^^^^^^^^^^^^^^^
File "/workspace/vllm/vllm/entrypoints/openai/api_server.py", line 155, in build_async_engine_client
async with build_async_engine_client_from_engine_args(
File "/usr/lib/python3.12/contextlib.py", line 210, in __aenter__
return await anext(self.gen)
^^^^^^^^^^^^^^^^^^^^^
File "/workspace/vllm/vllm/entrypoints/openai/api_server.py", line 191, in build_async_engine_client_from_engine_args
async_llm = AsyncLLM.from_vllm_config(
^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/workspace/vllm/vllm/v1/engine/async_llm.py", line 162, in from_vllm_config
return cls(
^^^^
File "/workspace/vllm/vllm/v1/engine/async_llm.py", line 124, in __init__
self.engine_core = EngineCoreClient.make_async_mp_client(
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/workspace/vllm/vllm/v1/engine/core_client.py", line 93, in make_async_mp_client
return AsyncMPClient(vllm_config, executor_class, log_stats,
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/workspace/vllm/vllm/v1/engine/core_client.py", line 735, in __init__
super().__init__(
File "/workspace/vllm/vllm/v1/engine/core_client.py", line 433, in __init__
self._init_engines_direct(vllm_config, local_only,
File "/workspace/vllm/vllm/v1/engine/core_client.py", line 502, in _init_engines_direct
self._wait_for_engine_startup(handshake_socket, input_address,
File "/workspace/vllm/vllm/v1/engine/core_client.py", line 522, in _wait_for_engine_startup
wait_for_engine_startup(
File "/workspace/vllm/vllm/v1/utils.py", line 494, in wait_for_engine_startup
raise RuntimeError("Engine core initialization failed. "
RuntimeError: Engine core initialization failed. See root cause above. Failed core proc(s): {}
Additional Context
No response
Suggested Solutions
No response
Metadata
Metadata
Assignees
Labels
bugSomething isn't workingSomething isn't working