-
Notifications
You must be signed in to change notification settings - Fork 84
/
Copy pathflux.1-dev-lora.py
25 lines (21 loc) · 1.05 KB
/
flux.1-dev-lora.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
import torch
from diffusers import FluxPipeline
from nunchaku import NunchakuFluxTransformer2dModel
from nunchaku.utils import get_precision
precision = get_precision() # auto-detect your precision is 'int4' or 'fp4' based on your GPU
transformer = NunchakuFluxTransformer2dModel.from_pretrained(f"mit-han-lab/svdq-{precision}-flux.1-dev")
pipeline = FluxPipeline.from_pretrained(
"black-forest-labs/FLUX.1-dev", transformer=transformer, torch_dtype=torch.bfloat16
).to("cuda")
### LoRA Related Code ###
transformer.update_lora_params(
"aleksa-codes/flux-ghibsky-illustration/lora.safetensors"
) # Path to your LoRA safetensors, can also be a remote HuggingFace path
transformer.set_lora_strength(1) # Your LoRA strength here
### End of LoRA Related Code ###
image = pipeline(
"GHIBSKY style, cozy mountain cabin covered in snow, with smoke curling from the chimney and a warm, inviting light spilling through the windows", # noqa: E501
num_inference_steps=25,
guidance_scale=3.5,
).images[0]
image.save(f"flux.1-dev-ghibsky-{precision}.png")