Skip to content

[BUG] <title>Problem about the accuracy of the conv3d #348

Open
@zb12138

Description

@zb12138

Is there an existing issue for this?

  • I have searched the existing issues

Current Behavior

What precision used in the convolution? How can I improve the accuracy?

from torchsparse import SparseTensor
from torchsparse import nn as spnn
import torch
from torchsparse.nn import functional as F
conv_config = F.conv_config.get_default_conv_config()
conv_config.kmap_mode = "hashmap"
F.conv_config.set_global_conv_config(conv_config)

torch.manual_seed(0)

p = torch.zeros((10, 4))
p[:,1:] = torch.randint(0, 100, (10, 3)) 
c = torch.rand((10, 3))*2**9
sp = SparseTensor(feats=c.float(), coords=p.int()).cuda()
conv = spnn.Conv3d(3, 3, (1, 1, 2), stride=(1, 1, 2)).cuda()
a = torch.cat((torch.eye(3), torch.zeros((3, 3))), 1)
b = torch.cat((torch.zeros((3, 3)), torch.eye(3)), 1)
conv.kernel.data = torch.cat((a[None, ...], b[None, ...]), 0).float().cuda()
print(sp.F)
print(conv.kernel.data)
print(conv(sp).F)
tensor([[156.2112, 477.1842,  90.0660],
        [138.1548,  77.1480,  16.2404],
        [106.5624, 476.0571, 370.2319],
        [380.0762, 269.4634, 124.7530],
        [299.3113,  16.9742,  71.0230],
        [124.0243, 417.5201, 406.0982],
        [142.4653, 246.7629, 419.7275],
        [510.4981, 357.6018, 290.5838],
        [427.6445, 105.2666, 303.7041],
        [ 57.5218,  78.5699, 123.7546]], device='cuda:0')
tensor([[[1., 0., 0., 0., 0., 0.],
         [0., 1., 0., 0., 0., 0.],
         [0., 0., 1., 0., 0., 0.]],

        [[0., 0., 0., 1., 0., 0.],
         [0., 0., 0., 0., 1., 0.],
         [0., 0., 0., 0., 0., 1.]]], device='cuda:0')
tensor([[510.2500, 357.5000, 290.5000,   0.0000,   0.0000,   0.0000],
        [  0.0000,   0.0000,   0.0000, 427.5000, 105.2500, 303.5000],
        [  0.0000,   0.0000,   0.0000, 106.5000, 476.0000, 370.0000],
        [  0.0000,   0.0000,   0.0000, 156.1250, 477.0000,  90.0625],
        [299.2500,  16.9688,  71.0000,   0.0000,   0.0000,   0.0000],
        [  0.0000,   0.0000,   0.0000, 138.1250,  77.1250,  16.2344],
        [ 57.5000,  78.5625, 123.7500,   0.0000,   0.0000,   0.0000],
        [124.0000, 417.5000, 406.0000,   0.0000,   0.0000,   0.0000],
        [380.0000, 269.2500, 124.7500,   0.0000,   0.0000,   0.0000],
        [142.3750, 246.7500, 419.5000,   0.0000,   0.0000,   0.0000]],
       device='cuda:0', grad_fn=<ImplicitGEMMConvolutionFuntionBackward>)

Expected Behavior

The value in out should same as the input except 0.00, e.g., the first row should be:
[510.4981, 357.6018, 290.5838, 0.0000, 0.0000, 0.0000]

Environment

- GCC: Ubuntu 7.5.0-6ubuntu2
- NVCC:  11.6
- PyTorch: '1.13.1'
- PyTorch CUDA: cuda-11.6 & Nivida 4090
- TorchSparse:Version: 2.1.0

Anything else?

No response

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions