@@ -164,26 +164,26 @@ model.summary(show_trainable=False)
164164
165165 Model: "model"
166166 _________________________________________________________________
167- Layer (type) Output Shape Param #
167+ Layer (type) Output Shape Param #
168168 =================================================================
169- input_1 (InputLayer) [(None, 10)] 0
170- normalization (Normalizatio (None, 10) 21
171- n )
172- dense (Dense) (None, 8) 88
173- batch_normalization (BatchN (None, 8) 32
174- ormalization )
175- re_lu (ReLU) (None, 8) 0
176- dropout (Dropout) (None, 8) 0
177- dense_1 (Dense) (None, 4) 36
178- batch_normalization_1 (Batc (None, 4) 16
179- hNormalization )
180- re_lu_1 (ReLU) (None, 4) 0
181- dropout_1 (Dropout) (None, 4) 0
182- dense_2 (Dense) (None, 1) 5
169+ input_1 (InputLayer) [(None, 10)] 0
170+ normalization (Normalizati (None, 10) 21
171+ on )
172+ dense (Dense) (None, 8) 88
173+ batch_normalization (Batch (None, 8) 32
174+ Normalization )
175+ re_lu (ReLU) (None, 8) 0
176+ dropout (Dropout) (None, 8) 0
177+ dense_1 (Dense) (None, 4) 36
178+ batch_normalization_1 (Bat (None, 4) 16
179+ chNormalization )
180+ re_lu_1 (ReLU) (None, 4) 0
181+ dropout_1 (Dropout) (None, 4) 0
182+ dense_2 (Dense) (None, 1) 5
183183 =================================================================
184- Total params: 198
185- Trainable params: 153
186- Non-trainable params: 45
184+ Total params: 198 (796.00 Byte)
185+ Trainable params: 153 (612.00 Byte)
186+ Non-trainable params: 45 (184.00 Byte)
187187 _________________________________________________________________
188188
189189
@@ -432,24 +432,25 @@ model.summary()
432432
433433 Model: "model_1"
434434 _________________________________________________________________
435- Layer (type) Output Shape Param #
435+ Layer (type) Output Shape Param #
436436 =================================================================
437- input_2 (InputLayer) [(None, 10)] 0
438- normalization (Normalizatio (None, 10) 21
439- n )
440- batch_normalization_2 (Batc (None, 10) 40
441- hNormalization )
442- dense_3 (Dense) (None, 8) 88
443- batch_normalization_3 (Batc (None, 8) 32
444- hNormalization )
445- dense_4 (Dense) (None, 4) 36
446- dense_5 (Dense) (None, 1) 5
437+ input_2 (InputLayer) [(None, 10)] 0
438+ normalization (Normalizati (None, 10) 21
439+ on )
440+ batch_normalization_2 (Bat (None, 10) 40
441+ chNormalization )
442+ dense_3 (Dense) (None, 8) 88
443+ batch_normalization_3 (Bat (None, 8) 32
444+ chNormalization )
445+ dense_4 (Dense) (None, 4) 36
446+ dense_5 (Dense) (None, 1) 5
447447 =================================================================
448- Total params: 222
449- Trainable params: 165
450- Non-trainable params: 57
448+ Total params: 222 (892.00 Byte)
449+ Trainable params: 165 (660.00 Byte)
450+ Non-trainable params: 57 (232.00 Byte)
451451 _________________________________________________________________
452452
453+
453454Next step is the creation of the parameter grid. First, let's establish the different parameters we could
454455explore.
455456
0 commit comments