-
Notifications
You must be signed in to change notification settings - Fork 64
/
Copy pathgpt2.py
201 lines (160 loc) · 6.02 KB
/
gpt2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
# Copyright © 2023-2024 Apple Inc.
from dataclasses import dataclass
from typing import Any, Dict, Optional, Tuple, Union
import mlx.core as mx
import mlx.nn as nn
import numpy as np
from .base import BaseModelArgs, create_attention_mask, scaled_dot_product_attention
@dataclass
class ModelArgs(BaseModelArgs):
model_type: str
n_ctx: int
n_embd: int
n_head: int
n_layer: int
n_positions: int
layer_norm_epsilon: float
vocab_size: int
num_key_value_heads: Optional[int] = None
def __post_init__(self):
if self.num_key_value_heads is None:
self.num_key_value_heads = self.n_head
class Attention(nn.Module):
def __init__(self, args: ModelArgs):
super().__init__()
assert args.n_embd % args.n_head == 0, "n_embd must be divisible by n_head"
self.n_embd = args.n_embd
self.n_head = args.n_head
self.head_dim = self.n_embd // self.n_head
self.scale = self.head_dim**-0.5
self.c_attn = nn.Linear(self.n_embd, 3 * self.n_embd, bias=True)
self.c_proj = nn.Linear(self.n_embd, self.n_embd, bias=True)
def __call__(
self,
x: mx.array,
mask: Optional[mx.array] = None,
cache: Optional[Any] = None,
) -> mx.array:
B, L, D = x.shape
qkv = self.c_attn(x)
queries, keys, values = mx.split(qkv, 3, axis=-1)
# Prepare the queries, keys and values for the attention computation
queries = queries.reshape(B, L, self.n_head, -1).transpose(0, 2, 1, 3)
keys = keys.reshape(B, L, self.n_head, -1).transpose(0, 2, 1, 3)
values = values.reshape(B, L, self.n_head, -1).transpose(0, 2, 1, 3)
if cache is not None:
keys, values = cache.update_and_fetch(keys, values)
output = scaled_dot_product_attention(
queries, keys, values, cache=cache, scale=self.scale, mask=mask
)
output = output.transpose(0, 2, 1, 3).reshape(B, L, -1)
return self.c_proj(output)
class MLP(nn.Module):
def __init__(self, args: ModelArgs):
super().__init__()
self.n_embd = args.n_embd
self.c_fc = nn.Linear(self.n_embd, 4 * self.n_embd)
self.c_proj = nn.Linear(4 * self.n_embd, self.n_embd)
def __call__(self, x) -> mx.array:
return self.c_proj(nn.gelu_approx(self.c_fc(x)))
class TransformerBlock(nn.Module):
def __init__(self, args: ModelArgs):
super().__init__()
self.n_head = args.n_head
self.n_embd = args.n_embd
self.layer_norm_epsilon = args.layer_norm_epsilon
self.attn = Attention(args)
self.mlp = MLP(args)
self.ln_1 = nn.LayerNorm(
self.n_embd,
eps=self.layer_norm_epsilon,
)
self.ln_2 = nn.LayerNorm(self.n_embd, eps=self.layer_norm_epsilon)
def __call__(
self,
x: mx.array,
mask: Optional[mx.array] = None,
cache: Optional[Any] = None,
) -> mx.array:
r = self.attn(self.ln_1(x), mask, cache)
h = x + r
r = self.mlp(self.ln_2(h))
out = h + r
return out
class GPT2Model(nn.Module):
def __init__(self, args: ModelArgs):
super().__init__()
self.n_embd = args.n_embd
self.n_positions = args.n_positions
self.vocab_size = args.vocab_size
self.n_layer = args.n_layer
self.layer_norm_epsilon = args.layer_norm_epsilon
assert self.vocab_size > 0
self.wte = nn.Embedding(self.vocab_size, self.n_embd)
self.wpe = nn.Embedding(self.n_positions, self.n_embd)
self.h = [TransformerBlock(args=args) for _ in range(self.n_layer)]
self.ln_f = nn.LayerNorm(self.n_embd, eps=self.layer_norm_epsilon)
def __call__(
self,
inputs: mx.array,
mask: mx.array = None,
cache=None,
):
_, L = inputs.shape
hidden_states = self.wte(inputs)
mask = None
if hidden_states.shape[1] > 1:
position_ids = mx.array(np.arange(L))
hidden_states += self.wpe(position_ids)
if mask is None:
mask = create_attention_mask(hidden_states, cache)
if cache is None:
cache = [None] * len(self.h)
for layer, c in zip(self.h, cache):
hidden_states = layer(hidden_states, mask, cache=c)
return self.ln_f(hidden_states)
class Model(nn.Module):
def __init__(self, args: ModelArgs):
super().__init__()
self.args = args
self.model_type = args.model_type
self.model = GPT2Model(args)
def __call__(
self,
inputs: mx.array,
mask: mx.array = None,
cache=None,
):
out = self.model(inputs, mask, cache)
out = self.model.wte.as_linear(out)
return out
def sanitize(self, weights):
new_weights = {}
for i in range(self.args.n_layer):
if f"h.{i}.attn.bias" in weights:
del weights[f"h.{i}.attn.bias"]
if f"h.{i}.attn.c_attn.weight" in weights:
weights[f"h.{i}.attn.c_attn.weight"] = weights[
f"h.{i}.attn.c_attn.weight"
].transpose(1, 0)
if f"h.{i}.attn.c_proj.weight" in weights:
weights[f"h.{i}.attn.c_proj.weight"] = weights[
f"h.{i}.attn.c_proj.weight"
].transpose(1, 0)
if f"h.{i}.mlp.c_fc.weight" in weights:
weights[f"h.{i}.mlp.c_fc.weight"] = weights[
f"h.{i}.mlp.c_fc.weight"
].transpose(1, 0)
if f"h.{i}.mlp.c_proj.weight" in weights:
weights[f"h.{i}.mlp.c_proj.weight"] = weights[
f"h.{i}.mlp.c_proj.weight"
].transpose(1, 0)
for weight in weights:
if not weight.startswith("model."):
new_weights[f"model.{weight}"] = weights[weight]
else:
new_weights[weight] = weights[weight]
return new_weights
@property
def layers(self):
return self.model.h