Skip to content

Commit 02bec0b

Browse files
authored
Matrix Attention kernel (#1610)
* Rough INIT * [WIP]: Loading and Matmuls added * [WIP]: Reductions and min working aligned kernel at headdim = 64 * [WIP] Added headdim 80 for testing * [WIP] Update dispatch params for testing * [WIP] Add support for unaligned seq lengths - still looks messy * Update sdpa_benchmarks * Update sdpa_benchmarks * Update sdpa_benchmarks * Enable gqa support * Update benchmark and switch off 128 headdim * Update headdim 128 tuning * Remove older fast attention code. Write out O strided * Disable hd=128 until further optimizations * Enable bf16 * Fix data size bug * Enable attn build outside of jit
1 parent c79f6a4 commit 02bec0b

File tree

14 files changed

+2055
-1115
lines changed

14 files changed

+2055
-1115
lines changed

benchmarks/python/sdpa_bench.py

Lines changed: 172 additions & 45 deletions
Original file line numberDiff line numberDiff line change
@@ -1,62 +1,189 @@
1+
# Copyright © 2024 Apple Inc.
2+
13
import argparse
24
import math
5+
import os
6+
import subprocess
7+
import time
38

49
import mlx.core as mx
5-
from time_utils import time_fn
10+
import numpy as np
611

7-
MAX_SEQ = 300
8-
START_SEQ = 100
9-
SEQ_INCREMENT = 50
12+
device_name = subprocess.check_output(["sysctl", "-n", "machdep.cpu.brand_string"])
13+
device_name = device_name.decode("utf-8").strip("\n")
1014

15+
N_warmup = 5
16+
N_iter_bench = 40
17+
N_iter_func = 8
1118

12-
def time_self_attention_primitives():
13-
mx.random.seed(3)
14-
B = 2
15-
H = 38
16-
D = 64
17-
for R in range(START_SEQ, MAX_SEQ, SEQ_INCREMENT):
18-
q = mx.random.uniform(shape=(B, H, R, D))
19-
k = mx.random.uniform(shape=(B, H, R, D))
20-
v = mx.random.uniform(shape=(B, H, R, D))
21-
scale = 1.0 / math.sqrt(float(D))
22-
mx.eval(q, k, v)
2319

24-
def sdpa_primitives(qs, ks, vs, alpha):
25-
s = (alpha * qs) @ ks.transpose(0, 1, 3, 2)
26-
p = mx.softmax(s.astype(mx.float32), axis=-1).astype(s.dtype)
27-
o = p @ vs
28-
return o
20+
def bench(f, *args):
21+
for i in range(N_warmup):
22+
f(*args)
2923

30-
time_fn(sdpa_primitives, q, k, v, scale)
24+
s = time.perf_counter_ns()
25+
for i in range(N_iter_bench):
26+
f(*args)
27+
e = time.perf_counter_ns()
28+
return (e - s) * 1e-9
3129

3230

33-
def time_self_attention_sdpa():
34-
mx.random.seed(3)
35-
B = 2
36-
H = 38
37-
D = 64
38-
for R in range(START_SEQ, MAX_SEQ, SEQ_INCREMENT):
39-
q = mx.random.uniform(shape=(B, H, R, D))
40-
k = mx.random.uniform(shape=(B, H, R, D))
41-
v = mx.random.uniform(shape=(B, H, R, D))
42-
scale = 1.0 / math.sqrt(float(D))
43-
mx.eval(q, k, v)
31+
def mlx_sdpa_fused_inner(q, k, v, scale):
32+
return mx.fast.scaled_dot_product_attention(q, k, v, scale=scale, mask=None)
4433

45-
def sdpa_fused(qs, ks, vs, alpha):
46-
o = mx.fast.scaled_dot_product_attention(qs, ks, vs, scale=alpha)
47-
return o
4834

49-
time_fn(sdpa_fused, q, k, v, scale)
35+
def mlx_sdpa_unfused_inner(q, k, v, scale, f32softmax=False):
36+
q_dtype = q.dtype
37+
q = q * mx.array(scale, q_dtype)
38+
n_q_heads = q.shape[-3]
39+
n_kv_heads = k.shape[-3]
40+
n_repeats = n_q_heads // n_kv_heads
5041

42+
B = q.shape[0]
43+
L = q.shape[2]
5144

52-
if __name__ == "__main__":
53-
parser = argparse.ArgumentParser("MLX benchmarks.")
54-
parser.add_argument("--gpu", action="store_true", help="Use the Metal back-end.")
55-
args = parser.parse_args()
56-
if args.gpu:
57-
mx.set_default_device(mx.gpu)
45+
if n_repeats > 1:
46+
q = mx.reshape(q, [B, n_kv_heads, n_repeats, L, -1])
47+
k = mx.expand_dims(k, 2)
48+
v = mx.expand_dims(v, 2)
49+
50+
scores = q @ mx.swapaxes(k, -1, -2)
51+
if f32softmax:
52+
scores = mx.softmax(scores.astype(mx.float32), axis=-1).astype(q_dtype)
5853
else:
59-
mx.set_default_device(mx.cpu)
54+
scores = mx.softmax(scores, axis=-1)
55+
56+
out = scores @ v
57+
if n_repeats > 1:
58+
out = mx.reshape(out, [B, n_q_heads, L, -1])
59+
60+
return out
61+
62+
63+
def mlx_spda_unfused(q, k, v, scale, transpose):
64+
q_out = q
65+
if transpose:
66+
k = mx.transpose(k, (0, 2, 1, 3))
67+
v = mx.transpose(v, (0, 2, 1, 3))
68+
69+
for i in range(N_iter_func):
70+
if transpose:
71+
q_out = mx.transpose(q_out, (0, 2, 1, 3))
72+
q_out = mlx_sdpa_unfused_inner(q_out, k, v, scale)
73+
if transpose:
74+
q_out = mx.transpose(q_out, (0, 2, 1, 3))
75+
76+
mx.eval(q_out)
77+
return q_out
78+
79+
80+
def mlx_spda_fused(q, k, v, scale, transpose):
81+
q_out = q
82+
if transpose:
83+
k = mx.transpose(k, (0, 2, 1, 3))
84+
v = mx.transpose(v, (0, 2, 1, 3))
85+
86+
for i in range(N_iter_func):
87+
if transpose:
88+
q_out = mx.transpose(q_out, (0, 2, 1, 3))
89+
q_out = mlx_sdpa_fused_inner(q_out, k, v, scale)
90+
if transpose:
91+
q_out = mx.transpose(q_out, (0, 2, 1, 3))
92+
93+
mx.eval(q_out)
94+
return q_out
95+
96+
97+
def bench_shape(B, qsl, ksl, head_dim, n_q_heads, n_kv_heads, np_dtype, transpose=True):
98+
shape_q = (
99+
(B, qsl, n_q_heads, head_dim) if transpose else (B, n_q_heads, qsl, head_dim)
100+
)
101+
shape_kv = (
102+
(B, ksl, n_kv_heads, head_dim) if transpose else (B, n_kv_heads, ksl, head_dim)
103+
)
104+
105+
q_np = np.random.normal(0.0, 1.0 / math.sqrt(head_dim), shape_q).astype(np_dtype)
106+
k_np = np.random.normal(0.0, 1.0 / math.sqrt(head_dim), shape_kv).astype(np_dtype)
107+
v_np = np.random.normal(0.0, 1.0 / math.sqrt(head_dim), shape_kv).astype(np_dtype)
108+
109+
scale = math.sqrt(1.0 / head_dim)
110+
111+
q_mx = mx.array(q_np)
112+
k_mx = mx.array(k_np)
113+
v_mx = mx.array(v_np)
114+
115+
time_mlx_unfused = bench(mlx_spda_unfused, q_mx, k_mx, v_mx, scale, transpose)
116+
time_mlx_fused = bench(mlx_spda_fused, q_mx, k_mx, v_mx, scale, transpose)
117+
118+
if transpose:
119+
q_mx = mx.transpose(q_mx, (0, 2, 1, 3))
120+
k_mx = mx.transpose(k_mx, (0, 2, 1, 3))
121+
v_mx = mx.transpose(v_mx, (0, 2, 1, 3))
122+
123+
o_mlx_fused = mlx_sdpa_fused_inner(q_mx, k_mx, v_mx, scale)
124+
o_mlx_unfused = mlx_sdpa_unfused_inner(q_mx, k_mx, v_mx, scale, f32softmax=True)
125+
126+
atol = 1e-5 if np_dtype == np.float32 else 1e-4
127+
128+
if not mx.allclose(o_mlx_fused, o_mlx_unfused, atol=atol):
129+
print(
130+
f"Failed at (B: {B}, qsl: {qsl}, ksl: {ksl}, head_dim: {head_dim}, n_qh: {n_q_heads}, n_kvh: {n_kv_heads}) [tpose = {transpose}] with max(|a - b|) = {mx.max(mx.abs(o_mlx_unfused - o_mlx_fused)):3.2e}"
131+
)
132+
133+
return time_mlx_fused, time_mlx_unfused
134+
135+
136+
def get_gflop_count(B, M, N, K):
137+
return float(2.0 * N_iter_bench * N_iter_func * B * M * N * K) / float(1024.0**3)
138+
139+
140+
if __name__ == "__main__":
141+
parser = argparse.ArgumentParser(description="Run gemm benchmarks")
142+
143+
dtypes = ("float16", "float32")[:1]
144+
transposes = (False,)
145+
146+
# fmt: off
147+
shapes_64 = (
148+
# ( B, qsl, ksl, head_dim, n_qh, n_kvh)
149+
( 1, 32, 32, 64, 32, 32),
150+
( 1, 64, 64, 64, 32, 32),
151+
( 1, 128, 128, 64, 32, 32),
152+
( 1, 256, 256, 64, 32, 32),
153+
( 1, 512, 512, 64, 32, 32),
154+
( 1, 1024, 1024, 64, 32, 32),
155+
( 1, 2048, 2048, 64, 32, 32),
156+
( 1, 4096, 4096, 64, 32, 32),
157+
)
158+
159+
shapes_80 = (
160+
# ( B, qsl, ksl, head_dim, n_qh, n_kvh)
161+
( 1, 1024, 1024, 80, 32, 32),
162+
( 1, 2048, 2048, 80, 32, 32),
163+
( 1, 4096, 4096, 80, 32, 32),
164+
)
165+
166+
shapes_128 = (
167+
# ( B, qsl, ksl, head_dim, n_qh, n_kvh)
168+
( 1, 1024, 1024, 128, 32, 32),
169+
( 1, 2048, 2048, 128, 32, 32),
170+
( 1, 4096, 4096, 128, 32, 32),
171+
)
172+
# fmt: on
173+
174+
shapes = shapes_64 + shapes_80 + shapes_128
175+
176+
print(" B, qsl, ksl, hdim, n_qh, n_kvh, tpose, dtype, t_unfs, t_fuse, diff%")
60177

61-
time_self_attention_sdpa()
62-
time_self_attention_primitives()
178+
for dtype in dtypes:
179+
for transpose in transposes:
180+
for B, qsl, ksl, head_dim, n_q_heads, n_kv_heads in shapes:
181+
np_dtype = getattr(np, dtype)
182+
time_mlx_fused, time_mlx_unfused = bench_shape(
183+
B, qsl, ksl, head_dim, n_q_heads, n_kv_heads, np_dtype, transpose
184+
)
185+
diff = time_mlx_unfused / time_mlx_fused - 1.0
186+
t_str = 1 if transpose else 0
187+
print(
188+
f"{B:3d}, {qsl:5d}, {ksl:5d}, {head_dim:4d}, {n_q_heads:4d}, {n_kv_heads:5d}, {t_str:5d}, {dtype}, {time_mlx_unfused: 2.3f}, {time_mlx_fused: 2.3f}, {100. * diff:+5.2f}%"
189+
)

mlx/backend/metal/kernels/CMakeLists.txt

Lines changed: 19 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -44,9 +44,7 @@ build_kernel(layer_norm)
4444
build_kernel(random)
4545
build_kernel(rms_norm)
4646
build_kernel(rope)
47-
build_kernel(
48-
scaled_dot_product_attention scaled_dot_product_attention_params.h
49-
sdpa_vector.h steel/defines.h steel/gemm/transforms.h steel/utils.h)
47+
build_kernel(scaled_dot_product_attention sdpa_vector.h)
5048

5149
set(STEEL_HEADERS
5250
steel/defines.h
@@ -68,6 +66,24 @@ set(STEEL_HEADERS
6866
steel/utils/type_traits.h
6967
steel/utils/integral_constant.h)
7068

69+
set(STEEL_ATTN_HEADERS
70+
steel/defines.h
71+
steel/utils.h
72+
steel/gemm/gemm.h
73+
steel/gemm/mma.h
74+
steel/gemm/loader.h
75+
steel/gemm/transforms.h
76+
steel/utils/type_traits.h
77+
steel/utils/integral_constant.h
78+
steel/attn/attn.h
79+
steel/attn/loader.h
80+
steel/attn/mma.h
81+
steel/attn/params.h
82+
steel/attn/transforms.h
83+
steel/attn/kernels/steel_attention.h)
84+
85+
build_kernel(steel/attn/kernels/steel_attention ${STEEL_ATTN_HEADERS})
86+
7187
if(NOT MLX_METAL_JIT)
7288
build_kernel(arange arange.h)
7389
build_kernel(binary binary.h binary_ops.h)

0 commit comments

Comments
 (0)