-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgridsearch_cond_evaluate.py
149 lines (118 loc) · 5.08 KB
/
gridsearch_cond_evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
import os
import numpy as np
import pandas as pd
from pylatex import Document, Package, NoEscape
from gridsearch_cond import PATT_CONFIG
from rdkit import rdBase
rdBase.DisableLog("rdApp.error")
BACKEND_NAMES = {
'btree': 'BT',
'vtree': 'LT',
'rtree': 'RT',
'ptree': 'RT-S',
'ctree': 'HCLT'
}
COLUMN_NAMES = [
'Occurence (Train)', 'Valid', 'NSPDK', 'FCD', 'Unique', 'Novel', 'nAt', 'nBo']
def highlight_top3(x, type='max'):
styles = np.array(len(x)*[None])
if x.isnull().sum().any():
return styles
match type:
case 'min':
i = np.argsort(x)[:3]
case 'max':
i = np.argsort(x)[-3:][::-1]
case _:
os.error('Unsupported type.')
styles[i] = [
'color:{c1};textbf:--rwrap;',
'color:{c2};textbf:--rwrap;',
'color:{c3};textbf:--rwrap;'
]
return styles
def latexify_style(df, path, row_names=None, column_names=None, precision=2):
if row_names is not None:
df.replace(row_names, inplace=True)
if column_names is not None:
df.rename(columns={o: n for o, n in zip(df.columns, column_names)}, inplace=True)
df.rename(index=BACKEND_NAMES, inplace=True)
patt_rename = {}
for patt in df.index.levels[0]:
occ = df.loc[patt, 'Occurence (Train)'].iloc[0]
patt_rename[patt] = f'{patt} ({int(occ):d})'
df.rename(index=patt_rename, inplace=True)
df.drop(columns=['Occurence (Train)'], inplace=True)
subset_min = ['NSPDK', 'FCD']
subset_max = ['Valid', 'Unique', 'Novel']
s = df.style
idx = pd.IndexSlice
for patt in df.index.levels[0]:
slice_min_ = idx[idx[patt, :], idx[subset_min]]
s.apply(highlight_top3, type='min', subset=slice_min_)
slice_max_ = idx[idx[patt, :], idx[subset_max]]
s.apply(highlight_top3, type='max', subset=slice_max_)
s.format(precision=precision, na_rep='-') # na_rep = nan replacement
s.format(precision=3, na_rep='-', subset=['NSPDK'])
s.to_latex(path, hrules=True, multicol_align='c', multirow_align='c', clines='skip-last;data')
line = []
with open(path, 'r') as file_data:
lines = file_data.readlines()
for w in lines[2].split():
match w:
case 'Valid' | 'Unique' | 'Novel':
w += r'$\uparrow$'
case 'NSPDK' | 'FCD':
w += r'$\downarrow$'
line.append(w)
# merge two lines
s = lines[3].split()[:3]
line = s + line[1:]
lines[2] = ' '.join(line)
lines[3] = ''
print(''.join(lines), file=open(path, 'w'))
def latexify_table(r_name, w_name, clean_tex=True):
with open(r_name) as f:
table = f.read()
doc = Document(documentclass='standalone', document_options=('preview'), geometry_options={'margin': '0cm'})
doc.packages.append(Package('booktabs'))
doc.packages.append(Package('multirow'))
doc.packages.append(Package('xcolor', options='table'))
doc.packages.append(NoEscape(r'\definecolor{c1}{RGB}{27,158,119}'))
doc.packages.append(NoEscape(r'\definecolor{c2}{RGB}{117,112,179}'))
doc.packages.append(NoEscape(r'\definecolor{c3}{RGB}{217,95,2}'))
doc.append(NoEscape(table))
doc.generate_pdf(f'{w_name}', clean_tex=clean_tex)
def load_eval(evaluation_dir, dataset, model):
path = evaluation_dir + f'{dataset}/{model}/'
df_list = []
for patt in PATT_CONFIG[dataset]:
df_list.extend([pd.read_csv(path + f) for f in os.listdir(path) if patt in f])
b_frame = pd.concat(df_list)
return b_frame
def conditional_table(b_frame, dataset, backends):
index_arrays = [PATT_CONFIG[dataset], backends]
index = pd.MultiIndex.from_product(index_arrays, names=['Pattern', 'Model'])
d_frame = pd.DataFrame(0., index=index, columns=COLUMN_NAMES)
g_frame = b_frame.groupby(['pattern', 'backend'])
for (idx, res_frame) in g_frame:
d_frame.loc[idx] = [
res_frame['a_occ_trn'].mean(),
100*res_frame['valid'].mean(),
res_frame['nspdk_tst'].mean(skipna=False),
res_frame['fcd_trn'].mean(skipna=False),
100*res_frame['unique'].mean(),
100*res_frame['novel'].mean(),
res_frame['nat_inc'].mean(),
res_frame['nbo_inc'].mean()]
return d_frame
if __name__ == "__main__":
evaluation_dir = '/mnt/data/density_learning/pgc/cond/'
df_qm9 = load_eval(evaluation_dir, 'qm9', 'marg_sort')
ourmodels_qm9 = conditional_table(df_qm9, 'qm9', BACKEND_NAMES.keys())
latexify_style(ourmodels_qm9, 'results/conditional_qm9.tab')
latexify_table('results/conditional_qm9.tab', 'results/conditional_qm9')
df_zinc250k = load_eval(evaluation_dir, 'zinc250k', 'marg_sort')
ourmodels_zinc250k = conditional_table(df_zinc250k, 'zinc250k', BACKEND_NAMES.keys())
latexify_style(ourmodels_zinc250k, 'results/conditional_zinc250k.tab')
latexify_table('results/conditional_zinc250k.tab', 'results/conditional_zinc250k')