-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgridsearch_unco_grid.py
181 lines (150 loc) · 5.16 KB
/
gridsearch_unco_grid.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
import os
import numpy as np
import torch
import pandas as pd
from pylatex import Document, TikZ, TikZNode, TikZOptions, NoEscape
from utils.datasets import MOLECULAR_DATASETS
from utils.conditional import create_conditional_grid, evaluate_conditional
from utils.plot import plot_grid_conditional, plot_grid_unconditional
from rdkit import Chem, rdBase
rdBase.DisableLog("rdApp.error")
ORDER_NAMES = {
'bft': 'BFT',
'canonical': 'MCA',
'dft': 'DFT',
'rcm': 'RCM',
'unordered': 'Random'
}
BACKEND_NAMES = {
'btree': 'BT',
'vtree': 'LT',
'rtree': 'RT',
'ptree': 'RT-S',
'ctree': 'HCLT'
}
IGNORE = [
'device',
'seed',
'sam_valid',
'sam_unique',
'sam_unique_abs',
'sam_novel',
'sam_novel_abs',
'sam_score',
'sam_m_stab',
'sam_a_stab',
'sam_fcd_trn',
'sam_kldiv_trn',
'sam_nspdk_trn',
'sam_fcd_val',
'sam_kldiv_val',
'sam_nspdk_val',
'sam_fcd_tst',
'sam_kldiv_tst',
'sam_nspdk_tst',
'res_valid',
'res_unique',
'res_unique_abs',
'res_novel',
'res_novel_abs',
'res_score',
'res_m_stab',
'res_a_stab',
'res_fcd_trn',
'res_kldiv_trn',
'res_nspdk_trn',
'res_fcd_val',
'res_kldiv_val',
'res_nspdk_val',
'res_fcd_tst',
'res_kldiv_tst',
'res_nspdk_tst',
'cor_valid',
'cor_unique',
'cor_unique_abs',
'cor_novel',
'cor_novel_abs',
'cor_score',
'cor_m_stab',
'cor_a_stab',
'cor_fcd_trn',
'cor_kldiv_trn',
'cor_nspdk_trn',
'cor_fcd_val',
'cor_kldiv_val',
'cor_nspdk_val',
'cor_fcd_tst',
'cor_kldiv_tst',
'cor_nspdk_tst',
'nll_trn_approx',
'nll_val_approx',
'nll_tst_approx',
'time_sam',
'time_res',
'time_cor',
'atom_list',
'num_params',
'model_path'
]
def find_best(evaluation_dir, dataset, model, metric='sam_fcd_val', maximize=False):
path = evaluation_dir + f'metrics/{dataset}/{model}/'
b_frame = pd.concat([pd.read_csv(path + f) for f in os.listdir(path)])
g_frame = b_frame.groupby(['backend', 'order'])
f_frame = []
for df in g_frame:
df[1].dropna(axis=1, how='all', inplace=True)
gf = df[1].groupby(list(filter(lambda x: x not in IGNORE, df[1].columns)))
af = gf.agg({metric: 'mean'})
if maximize:
ff = gf.get_group(af[metric].idxmax())
else:
ff = gf.get_group(af[metric].idxmin())
f_frame.append(ff[['backend', 'order', 'model_path']])
f_frame = pd.concat(f_frame).groupby(['backend', 'order'])
f_frame = f_frame.first()
return f_frame
def create_grid(df_paths, dataset, model_name, nrows=30, ncols=2, seed=0):
atom_list = MOLECULAR_DATASETS[dataset]['atom_list']
max_atoms = MOLECULAR_DATASETS[dataset]['max_atoms']
max_types = MOLECULAR_DATASETS[dataset]['max_types']
for backend in BACKEND_NAMES.keys():
for order in ORDER_NAMES.keys():
if (backend, order) not in df_paths.index:
print(f'Missing {model_name} {backend} model for {order} order for {dataset} dataset.')
continue
path_model = df_paths.loc[(backend, order)]['model_path']
model = torch.load(path_model, weights_only=False)
dname = f'gs0/eval/unconditional/{dataset}/{model_name}/{backend}/'
fname = f'{dataset}_{model_name}_{backend}_{order}'
os.makedirs(dname, exist_ok=True)
torch.manual_seed(seed)
plot_grid_unconditional(model, nrows, ncols, max_atoms, atom_list, dname=dname, fname=fname, useSVG=True)
def latexify_grid(dataset, model_name, backend):
doc = Document(documentclass='standalone', document_options=('preview'), geometry_options={'margin': '0cm'})
doc.packages.append(NoEscape(r'\usetikzlibrary{positioning}'))
doc.packages.append(NoEscape(r'\usepackage{svg}'))
m_width = 80
with doc.create(TikZ(options=TikZOptions({}))) as pic:
previous_position = {}
for i, (order, order_clean) in enumerate(ORDER_NAMES.items()):
dname = f'plots/unconditional/{dataset}/{model_name}/{backend}/'
fname = f'{dataset}_{model_name}_{backend}_{order}.svg'
samples_path = f'{dname}{fname}'
pic.append(TikZNode(
text=f'\includesvg[width={m_width}px]{{{samples_path}}}',
options=TikZOptions({**previous_position, 'label': '{[yshift=0px, font=\large]{' + f'{order_clean}' '}}'}),
handle=f'n{i}'))
previous_position = {'right': f'15 px of n{i}'}
doc.generate_tex(f'gs0/eval/unconditional/{dataset}_{model_name}_{backend}_grid')
if __name__ == "__main__":
evaluation_dir = '/mnt/data/density_learning/pgc/gs0/eval/'
### QM9 ###
path_frame = find_best(evaluation_dir, 'qm9', 'marg_sort')
create_grid(path_frame, 'qm9', 'marg_sort', seed=0)
for backend in BACKEND_NAMES.keys():
latexify_grid('qm9', 'marg_sort', backend)
### ZINC250K ###
path_frame = find_best(evaluation_dir, 'zinc250k', 'marg_sort')
create_grid(path_frame, 'zinc250k', 'marg_sort', seed=0)
for backend in BACKEND_NAMES.keys():
latexify_grid('zinc250k', 'marg_sort', backend)